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1.  Introduction

In this study, we examine the decadal variability of heat content in the upper ocean.  Changes in oceanic heat content reflect a net imbalance in heat exchange with the atmosphere.  A recent examination of the upper 0/750m by Levitus et al. [2005] shows a global heat content increase of 14.5x1022J between 1955 and 1998.  This increase raises the question of whether ocean measurements can be used to determine accurately a surface flux imbalance of only 0.3Wm-2, a number which is well below the uncertainty of atmospheric flux estimates. Thermal expansion associated with this increase in oceanic heat content accounts for 1/4-1/3 of the observed roughly 2 mm/yr global sea level rise during the past half century [Roemmich et al., 2006; IPCC, 2007].  Estimates of recent sea level rise since 1993 have shown an accelerated increase of 3.1mm/yr raising the question of whether this recent increase is due to fluctuations in oceanic heat content or else due to mass increases associated with increased continental ice melt.  Addressing these questions with oceanic heat content estimates requires exploring three sources of uncertainty.  The first is the uncertainty associated with mapping the sparse and irregular observations onto a uniform grid.  The second is the uncertainty associated with historically limited spatial and temporal sampling. Large parts of the Southern Ocean, for example, have been unsampled.  The third is the uncertainty in the measurements themselves, including instrumental biases.  In this paper we examine a collection of eight analyses of heat content, along with a set of coupled atmosphere-ocean general circulation model experiments to provide an improved estimate of heat content variability and its uncertainty during the past half century.
The difference in method of oceanic heat content anomaly calculation is one source of error to be considered. Due to differences in oceanic observational coverage on a spatial and temporal scale, different techniques of analysis and sampling have been implemented in previous studies to optimally use the in situ and satellite temperature data available. In general, the 0-750m ocean layer is chosen for oceanic heat content calculations because most observations are in the upper ocean, and the greatest increase in oceanic heat content over the last 50 years has occurred there [AchutaRao et al., 2007]. Due to sparse observations in the deep ocean, there is uncertainty in 0-3000m oceanic heat content calculations. Past observational interpolations have shown an overall increase in globally-averaged 0-750m oceanic heat content anomalies (OHCA) from 1955 to 1998 of 14.5x1022J  using objective analysis, or iterations of interpolating in situ observations around a gridpoint [Levitus et al., 2005], and 9.2x1022 J from 1993 to 2003 using a difference estimate, or a statistical blend of altimetry data and in situ oceanic heat content measurements [Willis et al., 2004]. Past analyses derived from different forms of data assimilation, or the blending of observations and model output using optimal weights, give OHCA increases over 1960-2001 ranging from 12.3x1022J using a 10-day assimilation cycle using the Incremental Analysis Update method [Carton and Giese, 2006] to 16.4x 1022J using optimal interpolation and 3DVar  methods [Davey, 2006]. All of these estimates from observational interpolation and data assimilation have shown decadal fluctuations, including decreases in oceanic heat content anomalies during the early 1960s, early 1980s and during the last four years [Lyman et al., 2006], but some climate models have not shown this unforced variability, which may be due to the exclusion of modes of natural variability, including solar and volcanic [Gregory et al., 2004; Broccoli et al., 2005; AchutaRao et al., 2007]. This discrepancy between models and observations further emphasizes the error in heat content estimates due to different methods of calculation. In this study, we examine the differences in trends in both the spatial and temporal variability of eight analyses of heat content: two calculated from observational interpolation, four from data assimilation and two from coupled atmosphere-ocean general circulation model experiments.  

Decadal variability of oceanic heat content anomalies evident in observational estimates may be due to another source of error that arises in calculating oceanic heat content, which is inadequate ocean sampling [Gregory et al., 2004; Hansen et al., 2005]. Through subsampling in situ sea surface height anomalies and comparing their global integral to that of data from Aviso, a combined satellite altimetry product, to calculate a standard error, Lyman and Willis [2006] found the magnitude of annual oceanic heat content anomalies on a global scale was well outside the range of uncertainty due to inadequate ocean sampling. They also discovered three eras of in situ sampling of OHCA from 1955-2005. The first era, before the widespread use of Expendable Bathythermographs (XBTs) in 1967, had poor sampling, with a globally averaged uncertainty of ~2-4x1022J, which is roughly the same order of magnitude as the decadal signal during that time. The second era, from 1968, the advent of widespread use of XBTs, to 2002, showed improvement in sampling. Uncertainty decreased to ~1.5 x1022J, which was small compared to decadal variations in OHCA. This was a result of a six-fold increase in the number of observations due to XBT implementation. A third era started around 2003 with the commencement of Argo, an international project involving the deployment of an array of 3000 autonomous profiling Conductivity-Temperature Depth (CTD) floats that measure temperature and salinity in the upper 2000m of the global ice-free ocean at 10-day intervals and 3ºx3º spatial resolution. This project further improved the oceanic observational network, and, in turn, reduced the uncertainty in the global average of annual OHCA to a historic low of 6 x 1021 J. Gouretski and Koltermann [2007] used a different approach in examining the sampling issue. They sampled 2ºx4º boxes of World Ocean Database 2001 (WOD01) temperature data to calculate subsampled OHCA, and they calculated the rms deviation from the full sample to measure sampling error. They calculated a sampling error in OHCA of 16x1022 J before the 1960s and 8x1022 J after the 1960s, both much larger than what Lyman and Willis had calculated, but still indicating a decrease in uncertainty after the pre-XBT era. Here, we perform a sampling experiment using output from two global coupled climate models developed at the Geophysical Fluid Dynamics Laboratory (GFDL), CM2.0 and CM2.1. Both models are composed of separate atmosphere, ocean, sea ice and land component models, which interact through a flux coupler module, and some difference in dynamics exists between the two simulations. 

In addition to errors in oceanic heat content anomaly calculations due to differences in analysis procedure and to poor sampling, errors due to biases inherent in certain types of instruments used for oceanic observations must be considered in order to completely assess the uncertainty in heat content estimates. The primary instrumentation used to build the WOD01 database, the collection used in all of the analyses examined in the first part of the study, included expandable bathythermographs (XBTs), mechanical bathythermographs (MBTs), conductivity-temperature depth instruments (CTDs), hydrographic bottles (Nansen and Rosette sample bottles) and profiling floats. XBTs are known to have a large warm bias, especially between 50m and 250m, and below 1000m [Gouretski and Koltermann, 2007], because of errors in the fall-rate equation determined by manufacturers [McPhaden et al., 1998]. A positive bias from XBTs has been confirmed by several intercomparison experiments [Roth, 2001; Boedeker, 2001; Gouretski and Koltermann], and the range in their temperature offsets, 0.08-0.28ºC, shows that the amount of error depends on the cruise, probe type and acquisition system. In addition to XBTs, MBTs also demonstrated a smaller, positive bias at shallow depths before the late 1950s, but this bias was not evident after 1980.  And, Willis and Lyman [2007] found that about 6% of all Argo float profiles, specifically from Sounding Oceanographic Lagrangian Observer (SOLO) instruments equipped with CTD sensors, had incorrect pressure values assigned to them due to design flaws, resulting in a cold bias between 2004 and 2006 of 2.3x1022 J, which was largest around the depth of the thermocline. They found that the biases from both Argo floats and XBTs were larger than sampling errors estimated in Lyman et al. [2006]. Errors also arise from several methods of measuring sea surface temperature (SST). Historically, SST has been measured with a water sample taken with a bucket that is tossed off of the side of a ship, and different types of buckets have different types of insulation and design [Folland and Parker, 1995; Hurrell and Trenberth, 1999]. During World War II, observers started measuring SST from water taken on to cool a ship’s engines. This measurement is influenced by several factors, including the depth and size of the ship’s intake, the lading of the ship, the configuration of the engine room and where exactly the measurement is taken [Hurrell and Trenberth, 1999]. Also, heat from the engine room may give these measurements a warm bias. In addition to in situ measurements, satellite measurements of SST also contain errors. Many algorithms convert the skin temperature, which is taken via infrared satellite measurements, into a bulk SST measurement with regression with selected buoy observations [Reynolds and Smith, 1994]. This introduces a warm bias into the data since bulk temperatures are about 0.2ºC warmer than skin temperatures [Hurrell and Trenberth, 1999]. Additional errors arise because SSTs cannot be measured by satellites in cloudy areas, and measurements of sea ice can differ substantially compared to in situ values. We examine the amount of error due to instrumentation based on previous literature and attempt to correct for this bias in the sampled GFDL model output. This allows us to provide a closed error budget for oceanic heat content anomaly calculations. 
Section 2 discusses the data and models used in the different estimates being used in examining these sources of error in oceanic heat content estimates. Section 3 discusses how the error is quantified for each source. Section 4 presents our results thus far. Finally, section 5 discusses the important conclusions and implications of our study. 

2. Data
Except for the model output used from GFDL, all analyses used in the first part of our study have similar in situ and altimetric observations (Table 1). For in situ data, all analyses used World Ocean Database 2001 (WOD01) temperature and salinity profiles, and, for altimetry data, utilization of ERS1/2, TOPEX/POSEIDON and Jason-1 data were common among all of the studies. In all studies involving data assimilation, the European Centre for Medium-Range Weather Forecasts 40-Year Reanalysis (ERA-40) fluxes or winds were used to force analyses. 
There were differences in the additional in situ and altimetry data used for each study, however. The three analyses taken from the Enhanced Ocean Data Assimilation and Climate Prediction  (ENACT) project supplemented the WOD01 data with data from the World Ocean Circulation Experiment (WOCE), the Global Temperature and Salinity Profile Project (GTSPP), Australian Expendable Bathythermographs (XBTs) and Conductivity-Temperature Depth (CTD) probe reports from the Pacific Marine Environmental Laboratory (PMEL) [Davey, 2006]. The Simple Ocean Data Assimilation, version 1.4.2 simulation (SODA 1.4.2) also used real-time temperature observations from the National Oceanographic Data Center (NODC) as well as observations from the TAO/Triton mooring array and from Argo drifters [Carton and Giese, 2006]. In addition to WOD01 data, Willis [2003] used GTSPP, WOCE and ARGO data, and Levitus [2005] used GTSPP data. All groups applied quality control procedures to the observations before any analyses were carried out. 

Four analyses derived from data assimilation were examined. Three of these were from the ENACT project funded by the European Union, which had the main objective of improving and extending ocean data assimilation systems over a 40 year period by applying different analysis procedures on its collection of in situ and satellite data [Davey, 2006]. All three analyses have 1°  by 1° resolution. The reanalysis developed by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) used the System for Ocean Forecasting and Analysis, a reduced-order optimal interpolation scheme that is based on the state vector projection onto vertical Empirical Orthogonal Functions. The United Kingdom Outdoor Institute scheme (UKOI) was based on the Timely Optimal Interpolation scheme of Bell et al. [2003], which calculates daily or ten-day analyses based on information from the model background field and the observations available in a defined time window on either side of the analysis time. New observations increment the model at the appropriate time, and their influence is determined by predefined error covariance values for the error characteristics of the observations and the model. Increments were applied over the full depth of the ocean. The European Centre for Research and Advanced Training in Scientific Computation (CERFACS) developed three and four-dimensional variational data assimilation (3DVAR and 4DVAR, respectively) systems for the global ocean version of the OPA ocean general circulation model; the 3DVAR analysis was used in our comparison. The variational analysis was produced by the minimization of a cost function that consists of an observation term, which measures the squared norm of the misfit between the observation vector and the model prediction of the observation vector, and a background term, which measures the squared norm of the misfit between the vector of control variables, or those variables with respect to which minimization is performed, and the background estimate of this vector, where a weighting matrix for each term is proportional to the inverse of the estimated error covariance matrix of both the observations and the background. 
Carton and Giese [2006] produced the SODA 1.4.2 reanalysis, which incorporated data assimilation with a state forecast produced by an OGCM with a resolution of 0.25° x 0.4° x 40 vertical levels and a 10-day assimilation cycle using the Incremental Analysis Update method to correct the model forecast via consideration of observations.  For this method, for five days after the time of the analysis, estimates of temperature and salinity updates are produced. Then, the simulation is repeated from the analysis time with temperature and salinity corrections added incrementally to produce the final analysis, maintaining a geostrophic relationship with minimum gravity wave excitation and a considerable reduction in forecast bias. Five-day averages of temperature, salinity and winds were retained and remapped onto a 0.5° by 0.5° grid.

Two observationally-based estimates of globally-averaged oceanic heat content anomalies were used. Willis et al. [2003] used a “difference estimate” method. First, profiles were grouped into 10° x 10° World Meteorological Organization (WMO) squares with quality control procedures applied. Heat content anomalies were then computed for each in situ profile that passed quality control inspection. Maps depicting annual average anomalies on a 1° x1° grid with ¼ year resolution were created.  A coefficient of regression was calculated separately for each modified WMO square. This coefficient was allowed to vary slowly with latitude and longitude to reflect the vertical structure of temperature anomalies. Then, a linear regression was applied onto altimetric height to construct a first guess for heat content, and this guess was corrected towards the in situ data. Combination of the two data sources was shown to reduce error compared to using each source individually. 
Levitus et al. [2005] used an objective analysis of temperature data to calculate heat content anomalies. Observed temperature anomalies were averaged for each individual year and objectively analyzed to obtain annual 1° x 1° gridded fields of temperature anomalies. The objective analysis included several iterations using different radii of influence [Locarnini et al., 2005]. The anomalies were used to compute the grand mean anomaly field; this field was subtracted from each individual yearly temperature anomaly field to form a new temperature anomaly field such that their mean value for 1957-1990 was zero. This field was used to compute heat content anomalies. There were no corrections to the depths of the observed level XBT profiles, but there were corrections for drop rate error for the different types of XBT profiles using the method of Hanawa [1994]. 
In addition to datasets derived through data assimilation and observational interpolation, model output from two global coupled climate models developed at the Geophysical Fluid Dynamics Laboratory (GFDL), CM2.0 and CM2.1, was examined in our study [Delworth et al., 2006]. Both models are composed of separate atmosphere, ocean, sea ice and land component models, which interact through a flux coupler module. In both models, resolution of land and atmospheric components is 2º latitude by 2.5º longitude with 24 vertical levels in the atmosphere. Ocean resolution is 1º latitude by 1º longitude, with meridional resolution equatorward of 30º  becoming progressively finer, such that meridional resolution is 1/3º at the equator. There are 50 vertical levels in the ocean with 22 evenly spaced levels within the top 220m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model has flux adjustments. The CM2.0 atmospheric component uses a B grid dynamical core, and the CM2.1 atmospheric component uses a finite volume (FV) dynamical core, which led to an improved simulation of midlatitude westerly winds as well as lower SST biases. In addition to this difference, there was a retuning of the clouds as well as a change in the land model to suppress evaporation when soil is frozen at a depth of 30cm, both increasing the net shortwave radiation at the surface in CM2.1 relative to CM2.0. And, a lower extratropical horizontal viscosity was used in the CM2.1 ocean component to reduce sea ice in the North Atlantic, and, in turn, significantly reduced the cold bias seen there in CM2.0.  
3. Methods

To examine the error in oceanic heat content calculations due to the difference in analysis procedure, quantitative and qualitative comparisons between the eight datasets were carried out. Oceanic heat content was calculated via the integration of temperature from the sea surface to 750m depth. Globally-averaged annual OHCA were calculated from the climatology of each dataset, and a time series for each dataset was created. The output from both GFDL models, CM2.0 and CM2.1, was averaged together to create a GFDL ensemble mean time series. Also, time series for both datasets from Willis [2004], the in situ estimate, denoted IS in the time series in Figure 1, and the difference estimate using in situ and altimetry data, denoted ISA, were included.  Due to the shorter length for the Willis data, anomalies were corrected with SODA and Levitus 1993-2003 anomalies. 

To detect similarities in patterns and variability, these time series were superimposed on each other. A mean time series of all of the datasets was also created, and a mean linear trend was calculated. The standard error about this trend was calculated by finding the standard deviation of the datasets for each year and calculating the trends when the annual STD was added or subtracted from the mean OHCA time series. The average difference between the mean trend and the mean trend ± 1 STD is the error due to analysis procedure. In addition to these calculations for the global ocean, spatial analyses of decadally averaged OHCA were created for several regions over 1960-2000, including the northern and southern Atlantic, the northern and southern Pacific and the Southern Ocean. Again, comparisons of patterns and magnitudes were made, but in a more visual sense. Due to the short time span covered by the Willis dataset, it was not included in the spatial comparisons. 
As discussed in the introduction, historical sampling can also have an impact on the accuracy of oceanic heat content estimates. This can be illustrated by subsampling a numerical simulation, reconstructing the model’s warming signal with the subsampled data, and comparing this to the signal from the complete data. The numerical simulations used were the GFDL CM2.0 and 2.1 models discussed in Section 2. As a basis for sampling, the station locations used in updating the SODA 1.4.2 run were used. First, globally averaged annual oceanic heat content anomalies were calculated using the complete CM2.x simulations from 1960-1999. Then, subsampled OHCA were calculated at 1.4.2 locations using Cressman analysis, a form of objective analysis. The sampling error is calculated by finding the rms error between the complete and subsampled OHCA calculations for each of the two models. 
To quantify the error in OHCA due to instrumental biases, since XBTs appear to have the largest bias in temperature measurements, an average bias will be calculated based on previous intercomparison experiments. We will use this bias to correct temperature data from the GFDL output that is sampled from station locations and then calculate OHCA based on this bias correction. The proximity of these calculations to the OHCA derived from the complete simulations will be an indicator of the accuracy of our assessment of the instrumental bias. More details on the procedure will be discussed in future work. 
4. Results

I.  Error due to analysis procedure

A comparison among time series of globally averaged, annual 0-700m heat content anomalies showed similar trends (Figure 1a). All time series, whether they were based on observations, data assimilation or models, showed decadal variability with negative anomalies in the early 1960s and 1980s. Another common characteristic among all seven estimates was an overall positive linear trend over the entire time period. The average linear trend among the datasets was 9.1 x 106 Jm-2yr-1, or an excess average heat flux of 0.29 Wm-2 into the ocean (Figure 1b). Despite these similarities, there is a noticeable spread from the average time series in Figure 1a. Based on the methodology discussed in Section 3, the error due to the difference in analysis procedure was found to be ±0.29Wm-2, which is as large as the average linear trend of oceanic heat content anomalies! Also, an important note was that there was a warm bias in the early 1960s and mid 1990s corresponding to the outlying UKOI time series. This was omitted from final calculations, so they are not evident in Figure 1a. The ENACT observational dataset used in the first UKOI analysis had a warm bias in XBT data after 1995, and the warm bias in the first few years of the dataset could be attributed to the adjustment of OGCM biases after data assimilation commences [Davey, 2006]. Later versions of ENACT observations may yield an analysis more in line with the other time series. Overall, these findings reveal a considerable amount of uncertainty in oceanic heat content anomaly estimates among datasets calculated with different methods. 

Spatial comparisons by region confirmed what was found in our quantitative analysis. Maps for the northern and southern Atlantic, northern and southern Pacific and Southern Ocean basins also indicated a significant decadal variability of OHCA (Figure 2a-e).  Also, analyses varied in the level of agreement of OHCA patterns and magnitudes. In general, contrasts among analyses were greater for oceanic regions in the Southern Hemisphere than for regions in the Northern Hemisphere. This is very indicative of the greater number of observations available in the Northern Hemisphere ocean, and, conversely, the poorer network in place in the Southern Hemisphere ocean. A consistency found in all regions studied was the fact that the SODA 1.4.2 analysis showed more detail in patterns and trends than the other analyses. This must be due to its higher resolution as well as its method of data assimilation, as discussed in Section 2. 
For the northern Atlantic (Figure 2a), all analyses, except for GFDL, showed a decadal warming of the subtropical gyre and cooling of the subpolar gyre over 1960-2000. The UKOI, CERFACS and Levitus datasets show strong warming in the area of the Gulf Stream, with a maximum of ≥3.5x109Jm-2 off the Gulf of St. Lawrence in the 1990s. The INGV and SODA analyses also exhibit warming in the same region over time, but it is less intense. SODA showed the strongest decadal cooling of the subpolar gyre, with areas of ≤ -2.5x109 Jm-2 apparent in the 1980s and 1990s. The GFDL ensemble mean did not exhibit these trends. In fact, there appeared to be a weak decadal warming of the eastern portion of the subpolar gyre. There is much less agreement among the analyses in trends and patterns in the southern Atlantic (Figure 2b), which, as discussed earlier, is likely due to a lack of observations historically. SODA exhibits decadal warming in the subtropical gyre and cooling in the subpolar gyre, but the other analyses do not pick up these trends. The GFDL models and the CERFACS and UKOI analyses showed a similar trend of warming in the 40º-60ºS region, with a band of positive OHCA. INGV did not show any discernable trend in OHCA during 1960-2000. 
In the northern Pacific (Figure 2c), a common trend among all analyses except for the GFDL models is cooling in the 30º-50ºN region from 1960-1990 followed by warming in the 1990s. Similar to the handling of trends in other regions, SODA shows the most intense cooling, with minimum OHCA of ≤ -2.5x109 Jm-2. SODA and the GFDL models showed decadal warming in the 40º-60ºN region over 1980-2000, but SODA showed a larger region of positive OHCA than GFDL. Similar to the inconsistencies among analyses in the southern Atlantic, the OHCA patterns and trends evident in the southern Pacific differed (Figure 2d). SODA exhibited a decadal warming during 1980-2000 in the 0-40ºS region and a cooling in the 40º-60ºS region. However, the UKOI and CERFACS analyses showed opposite trends, with cooling in the 0-40ºS region and a warming in the 40º-60ºS region. The areal extent of the anomalies was also different, with much broader areas apparent in the SODA analysis than in UKOI and CERFACS. INGV and the GFDL models showed no trend in OHCA over the entire time period. For the Southern Ocean (Figure 2e), the areas of anomalies were very inconsistent, reflective of the very poor spatial and temporal data coverage there. UKOI exhibited a decadal warming around Antarctica over 1960-2000, but SODA showed warming only over 1960-1980, and actually exhibited a cooling over 1980-2000. The other analyses showed few or no anomalies and no discernable trend over time. 
II/III. Errors due to sampling and instrumental biases 
These results are currently being produced, and will be discussed in future work. 
5. Conclusions
Discovering these three types of errors in calculating oceanic heat content anomalies allows for some skepticism about how much our oceans are really warming as well as the magnitude of the thermosteric contribution to sea level rise. Considering the meteorological and societal impacts of accelerated sea level rise, it is very important to not only find and assess all sources of error in measuring oceanic heat content anomalies, but to reduce the amount of error that is present. Optimal accuracy of calculations of heat content will lead to better diagnosis and modeling of sea level rise.  

In terms of our intercomparison of globally-averaged oceanic heat content anomaly estimates, although spatial and temporal variability patterns were similar among analyses produced with different methods, such as data assimilation, observational interpolation and model output, the magnitudes of anomalies were quite different. In terms of sources of error due to data assimilation, modeling biases as well as model dynamics and physics must be noted.  In addition, reanalyses tend to be unconstrained in terms of global heat and freshwater budgets, and this can lead to problems when examining long-term climate change [Wunsch et al., 2007]. Furthermore, the observations used in these analyses are impacted by how they are sampled in terms of horizontal and vertical scales as well as instrumental biases introduced by XBTs. 

There has yet to be a concrete physical explanation for the decadal variability observed in all analyses. Several modeling studies have been done to examine whether this variability is natural or anthropogenically forced [Ammann et al., 2003; Broccoli et al., 2003; Church et al., 2005; Delworth et al., 2005]. These studies showed that model OHCA are closest to observations when natural forcings, such as solar and volcanic, are applied. Delworth et al. [2005] and Church et al. [2005] cited several volcanic eruptions which caused oceanic cooling due to a negative impact on the net planetary radiative balance. Following the eruptions of Krakatau, Agung, Chichon and Mount Pinatubo, the surface temperature a few years after a volcanic event returned to the state before the eruption, but the subsurface cooled waters persisted on a decadal time scale, revealing one possible explanation for the observed variability in the first part of our study. More detection and attribution studies need to be done to further address this issue. 

Errors in oceanic heat content measurements due to sampling are abundant due to temperature and salinity measurements varying greatly in terms of horizontal position and depth as well as availability. Specifically, the scarcity of data in both polar regions, especially the Southern Ocean, may cause an omission of data that could significantly influence oceanic heat content measurements [Wunsch et al., 2007]. Since the Southern Ocean is not surrounded by land, it can transmit climatic signals, such as anomalous oceanic warming, between the Pacific, Atlantic and Indian Oceans [Gille, 2002]. 

The results of this study thus far call for a continued effort to improve the oceanic observational system.  The recent efforts to do so through the deployment of the Argo array of profiling CTD floats and the acquisition of real-time data from these instruments have allowed for a reduction in error since Argo’s inception in 2002, although, as discussed earlier, some errors in Argo observations have been recently discovered [Lyman et al., 2006, 2007]. In addition to improving in situ observations, satellite altimetry missions, such as TOPEX/Poseidon, ERS 1 and 2 and Jason, must be well-maintained in order to accurately measure sea surface height changes. Also, with GRACE, the Gravity Recovery and Climate Experiment, being deployed in 2002, a longer data record will aid in measuring mass-related sea level rise [Lyman et al., 2006]. At a minimum, these in situ and satellite initiatives need to continue to come to fruition in order to produce the most accurate estimates of oceanic heat content anomalies possible. 

In addition to improving our oceanic observational database, bias-corrected XBT data must be used in any study using these measurements. Any instrumental biases will affect the outcome of a study, and, in this case, cause an overestimation of any temperature-dependent quantity, such as oceanic heat content anomalies. Finally, an appropriate sampling procedure must be utilized when integrating variables globally and vertically. Although data coverage on a spatial and temporal scale is much better presently than in the past, it is important to consider how we sample observations before the widespread use of XBTs in the late 1960s when examining long-term trends in oceanic heat content variability [Lyman et al., 2006]. The choice of interpolation scheme is also vital when sampling observations.   
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Table 1 Description of analyses examined in study, including data utilized and method of         analysis implemented in each
	Analysis 
	In situ data
	Satellite and altimetry data
	Model forcing 
	Analysis procedure

	SODA 1.4.2 

(1962-2001)

[Carton and Giese, 2006]
	WOD 2001 temperature and salinity profiles, real-time temperature observations from NODC/NOAA archive, TAO/Triton mooring array and ARGO drifter observations


	NOAA/NASA AVHRR SST data and ERS 1/2, TOPEX/POSEIDON, JASON altimeter data
	ERA 40 winds
	10-day assimilation cycle with Incremental Analysis Update

	Willis (1993-2005)

[Willis et al., 2004]
	WOD 2001, GTSPP, WOCE and ARGO in situ profiles  


	TOPEX/POSEIDON, Jason1 and ERS 1/2 altimetric data
	N/A
	A “difference estimate” 

	Levitus (1955-2003)

[Levitus et al., 2005]
	WOD 2001 plus real-time and delayed-mode temperature profiles from the IOC GTSPP
	N/A
	N/A
	Objective analysis 


	INGV (1962-2001)

[Davey, 2006]


	WOD 2001 supplemented with WOCE, Australian XBT data, PMEL CTD reports and GTSPP


	GEOSAT,TOPEX/
POSEIDON, ERS 1/2, Jason-1 and ENVISAT altimetric data


	Levitus climatology, ERA 40                                    climatological fluxes 
	SOFA


	CERFACS 

(1962-2001)

[Davey, 2006]
	WOD 2001 supplemented with WOCE, Australian XBT data, PMEL CTD reports and GTSPP


	GEOSAT,TOPEX/
POSEIDON, ERS 1/2, Jason-1 and ENVISAT altimetric data


	Levitus climatology, ERA 40                                    climatological fluxes 
	3DVar

	UKOI (1962-1998)

[Davey, 2006]
	WOD 2001 supplemented with WOCE, Australian XBT data, PMEL CTD reports and GTSPP


	GEOSAT,TOPEX/
POSEIDON, ERS 1/2, Jason-1 and ENVISAT altimetric data


	Levitus climatology, ERA 40                                    climatological fluxes 
	OI

	GFDL CM2.0 and CM2.1 models

[Delworth et al., 2006]
	N/A
	N/A
	1860 values for solar, land cover, greenhouse gases 
	Coupled Model


[image: image1.png]



[image: image2.png]B8R bE g o8 8§ 8 B8 g gL EEog PR

7 % 88 ® om s ¢ 8 8 £9 & B 8¢ & 8 8og @ @ &
anananan





Figure 1 (a) 1955-2005 time series of globally averaged annual oceanic heat content (OHCA) for each analysis examined. (b) the mean time series of all analyses compared with annual error bars of ± 1 STD. In our comparison, four estimates were calculated using different forms of data assimilation (SODA1.4.2, INGV,CERFACS,UKOI), two estimates were calculated with methods of observational interpolation (Willis and Levitus), and one estimate was created using model output (GFDL). The analyses showed a similar overall linear increase in OHCA with considerable decadal variability, with decreases in OHCA evident in the early 1960s and 1980s as well as over the last three years of the period examined. 
[image: image3.png]


[image: image4.png]son 1960g som 1970g Bon 19305 son 1990
E F .= . = .
GFDL 4ov “on son M
zon 200 - 200 zon
g g o ]
cerF m L
e YR ———y =y
| == |y, | - “
so g —=
NGV wub on
oy son g
SODA son mm
g g
TEVEREE A u.m- mu” il
oty @7 200 ~ 200 “y 200 ~





[image: image5.png]GFDL 2o

CERF %

UKol ==

INGY 208

SODA 2

£0s

|
Lewi eosfh





[image: image6.png]o

1960 1970 1980s 1980s
" @I‘\ Cﬁ\ C\ji\ @L‘
" &’

/d ?"\





[image: image7.png]OHCA (x10% Jm-2)

—INGV

——SO0DA

— Levitus

——UKOlI

——CERFACS

——GFDL

— Wiillis ISA Corr
Wiillis IS Corr
Average

-4
1955

1965 1975 1985
Year

1995 2005



[image: image8.png]OHCA (x108 Jm?)

4 -
P
0 1 LN TITTT
ﬂ/—\
2
4 . . : -
1955 1965 1975 1985 1995

Year

2005





  




Figure 2 Spatial map of decadally-averaged 0-700m heat content anomalies in the a) northern Atlantic (80°W-0°, 0°-60°N), b) southern Atlantic (80°W-0°, 60°S-0º), c) northern Pacific  (150°E-130°W, 0°-60ºN), d) southern Pacific (150°E-130°W, 60°S-0º) and e) the Southern Ocean for GFDL, INGV, CERFACS, UKOI, SODA 1.4.2 and Levitus during 1960-2000. The units of anomalies are 109 Jm-2.  In general, contrasts among analyses were greater for oceanic regions in the Southern Hemisphere than for regions in the Northern Hemisphere, indicative of the greater number of observations available in the Northern Hemisphere ocean, and, conversely, poorer sampling in the Southern Hemisphere ocean.
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