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ABSTRACT

The coastal ocean is one of the most critical regions of the ocean. It has many unique

and complex physical processes spanning various spatial and temporal scales. The central

California coast is one of such areas. It has significant coastal upwelling processes, involving

mesoscale eddies and fronts. It is also a well-sampled area where a variety of observations

are made though a number of field experiments. To better understand the physical processes

and improve the estimation and prediction in the this area, an advanced ensemble Kalman

filter method coupled with the Regional Ocean Modeling System (ROMS) for the central

California coast is used in this study. This study focuses on two aspects in data assimilation

(DA): stratification of coastal ocean and dynamic constraints, under the observing system

simulation experiments (OSSEs) framework in an idealized California current system.
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1. Introduction

1.1. Coastal Ocean System

The coastal ocean is one of the most critical regions of the ocean, which has high socio-

economic value due to recreation, shipping, fisheries, and mineral/oil/gas exploitation. In

addition, its complex and unique physical characteristics due to the control of surface and

bottom boundaries and coastlines, biological, and biogeochemical processes have drawn in-

creasing attention to scientists in many fields. With the growing concern in the coastal ocean,

real-time monitoring and forecasting are vital and have been emphasized. The observations

of the coastal ocean are usually inhomogeneous and sporadic in space and time; an ocean

model and an advanced data assimilation (DA) system are thus necessitated.

In this study, the central California coast is our concern, which has interesting dynamics

spanning a wide range of spatial and temporal scales. The typical phenomenon in this region

is coastal upwelling process, characterized by a tens-of-kilometers wide cold band along the

coast. Southward winds drive offshore Ekman transport, force surface waters offshore, and

draw deeper colder water to the surface. Mesoscale eddies and fronts are observed to separate

the cold upwelling region and warm offshore area. The upper ocean in the offshore area has

strong stratification supported by surface heating. The central California coast is also one

of the well-sampled ocean regions. A number of field experiments have been carried out

there and a variety of observations from different observing platforms with various density

and coverage are available, such as data from shallow-water gliders, moorings and high-

frequency (HF) radar (Chao et al. 2009). Hence, these valuable observations provide us with

a possibility to improve our understanding of dynamical processes in this region and model

simulations and predictions through DA systems.
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1.2. DA-Related Issues

This research aims at building a DA system based on an advanced ensemble Kalman

filter (EnKF) scheme in a regional ocean model (see Section 2.1). In the meanwhile, we

also hope this research can help the design and development of observing systems in the

California coastal area. The reason of selecting an EnKF as a DA system is its ability of

considering the flow-dependent information and then estimating time-evolving forecast error

covariance by an ensemble of model runs. The advanced EnKF method that we are using is

the Local Ensemble Transform Kalman Filter (LETKF) by Hunt et al. (2007). More details

of the LETKF will be shown in Section 2.2. The LETKF has recently been used in coastal

ocean data assimilation and promising results were found in the observing system simulation

experiments (OSSEs) in the Chesapeake Bay (Hoffman et al. 2012). In this study, we focus

on two aspects associated with the DA system: stratification of coastal ocean and dynamic

constraints. Other aspects that can potentially have significant impact including multiscale

DA schemes and the assimilation of HF radar radial velocity are also discussed.

1.2.1) Stratification

Vertical stratification of the ocean due to the water masses with different densities is a

naturally occurring phenomenon and the ocean is separated by several layers with different

properties in the vertical. An ocean DA system is expected to properly handle the vertical

stratification.

In an ensemble-based Kalman filtering DA system, the time-evolving background error

covariance is estimated in the ensemble space. Due to the limit of the computational and

storage resources, the ensemble size is typically small and could not be infinitely increased to

a comparable number of degrees of freedom in numerical models. Hence, the ensemble-based

background error covariance suffers from rank deficiency and spurious correlations between

distant locations (e.g. Hacker et al. 2007; Hunt et al. 2007); the analysis is then negatively
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affected by the observations far way in a random manner (Hunt et al. 2007). In addition,

Patil et al. (2001) found that the spatiotemporally chaotic atmosphere has low dimension-

ality in local regions. This local low-dimensionality feature allows the feasibility that the

analysis could be obtained in high-dimensional space if local analysis could choose different

linear combinations of the ensembles in different local regions (Hunt et al. 2007). In prac-

tice, ”space localization” is introduced to localize the observational influences on the state

variables nearby, suppress the spurious correlations and ameliorate sampling errors in the

EnKF with a finite number of ensemble members. Besides improving the DA performance,

the ”space localization”, in which the local analysis could be calculated independently, al-

lows the implementation of efficient parallel computation (Keppenne 2000; Keppenne and

Rienecker 2002; Hunt et al. 2007).

The ”space localization” method is typically carried out by applying a distance-dependent

function, which decays to zero beyond a distance, to either the background error covariance

(namely the B localization in Greybush et al. 2011) or the observation error covariance

(namely the R localization in Greybush et al. 2011). For instance, Hamill et al. (2001) used

an elementwise multiplication of the background error covariance matrix with a correlation

function with local support to reduce noisiness and then improve background error covariance

estimate. Hunt et al. (2007) multiplied the inverse observation error covariance by a Gaussian

function that decays from one to zero as the distance of the observations from the analysis

grid point increases. Other types of the ”space localization” have also been designed, such

as a hierarchical ensemble filter by which Anderson (2007) used to adaptively estimate the

sampling error and the impact of spurious sample correlations between an observation and

model state variables.

Many studies of the ”space localization” are done in horizontal directions (e.g. Houtekamer

and Mitchell 1998; Hamill et al. 2001; Greybush et al. 2011); while a few consider the lo-

calization in the vertical (e.g. Houtekamer et al. 2005; Whitaker et al. 2004; Keppenne and

Rienecker 2002; Hacker et al. 2007). For atmospheric DA, Houtekamer et al. (2005) applied
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the Schur product and Whitaker et al. (2004) employed a covariance filter to background

error covariance to confine the horizontal and vertical impact of observations in atmospheric

EnKF methods. For ocean DA, Keppenne and Rienecker (2002) used a Hadamard product

with a three-dimensional canonical correlation function to limit spurious covariances in the

background error covariances in a multivariate EnKF with the Poseidon ocean circulation

model. Penny et al. (2013) applied a Gaussian weighting in the vertical to a constant cutoff

distance in order to limit the influence of observations far way from the analysis grid point in

their recent work of four-dimension LETKF coupled with the Geophysical Fluid Dynamics

Laboratory Modular Ocean Model 2.2. Cummings (2005) reviewed three options of vertical

correlation length-scales in the correlation of background error covariance in ocean DA: (i)

constant, (ii) monotonically increasing or decreasing with depth, or (iii) changing with back-

ground vertical density gradients. Vertical correlation length scales could be evolved from

analysis cycles.

Because of the stratification, the influence of observations that are collected within the

mixed layer should be localized in the mixed layer and observations that are made in the

deep ocean will not be used in the mixed layer. In addition, the ocean is more sampled in

the upper layers than beneath in the vertical. Therefore, the vertical localization associated

with stratification is important for ocean DA.

1.2.2) Dynamic Constraints

The state of ocean in numerical models is described by several relationships: the equation

of state, temperature-salinity (T − S) relation, and geostrophic and thermal wind balance.

During DA processes, the analysis is computed as an optimal combination of a short-range

forecast from numerical models (i.e. background) and recent observations. The background

variables that are outputted from numerical models usually comply with the dynamic balance

underlying in the models; whereas different types of observations with different error are not

dynamically consistent. Once a variety of observations are assimilated, the analysis may not
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sustain the reasonable dynamic balances as the background. As a result, the forecast that is

integrated from the analysis will degrade rapidly. In addition, background error covariance

with better cross-variable correlation through dynamic constraints usually leads to better

dynamically balanced analyses in a multivariate system (Weaver et al. 2005). Therefore,

dynamic constraints are crucial in DA systems.

Dynamic constraints can be fulfilled through either a post process after univariate DA

or being involved in background error covariance in multivariate DA. Troccoli et al. (2002)

assimilated temperature observations only, updated salinity increments using temperature

analysis based on the model T − S relationship and achieved better forecasts of the mean

state and temporal variability compared with experiments without constraints. However,

this kind of approach is apparently not valid for assimilating different types of observations.

Ricci et al. (2005) assimilated both temperature and salinity, included T − S constraint

within the background error covariance in a 3DVar system and found not only significant

improvements of the salinity mean state but also remove spurious geostrophic currents in

univariate analysis. More general and complex methods are exploited to incorporate mul-

tivariate dynamic constraints. Weaver et al. (2005) introduced a method from Derver and

Bouttier (1999) into incremental variational DA coupled with an ocean general circulation

model (OGCM). In this paper, a multivariate balance operator was designed to transform

model background error covariance from model space of highly-correlated variables to a con-

trol space of approximately uncorrelated nondimensional control variables. All state vari-

ables except for temperature are divided into balanced and unbalanced parts. Temperature

is used to build the balanced part of other variables based on geostrophy, hydrostatic and

dynamic height balance and linearized T −S relationship and equation of state. For coastal

area, the background error covariance is significantly inhomogeneous and anisotropic and

thus special treatment is needed. Li et al. (2008) utilized two dynamic constraints, hydro-

static and geostrophic balance, to the increments in their ROMS3DVAR system. The model

state variables were also separated into balanced and unbalanced parts based on two con-
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straints. Moreover, nonhomogeneous and anisotropic ageostrophic velocity were substituted

by ageostrophic streamfunction and velocity potential in order to avoid non-zero cross-error

covariance of ageostrophic velocity. Hence the background error covariance was constructed

by nonsteric sea surface height, ageostrophic streamfunction and velocity potential, and tem-

perature and salinity. Particularly, for multiscale DA schemes, the MS-3DVar formulation

introduced by Li et al. (2012) flexibly incorporates different dynamic balance for different

decorrelation length scales.

Dynamic constraints are usually considered in variational DA framework, as shown in

aforementioned studies. However, they are rarely emphasized in EnKF-based DA schemes.

In this prospectus, we would like to investigate the dynamic balance associated with strati-

fication in the LETKF scheme.

The ultimate goal is to establish an LETKF-based simulating/predicting system that

can address strong stratification, dynamic constraints, multiscale dynamic processes and

multiscale observations, especially HF radar radial velocity off the central California coast.

Such a system is expected to have better performance than the current operational 3DVar

system in the central California coast.

2. Methodology

2.1. Model Description - ROMS

The ocean model used in this study is the Regional Ocean Modeling System (ROMS)

(Shchepetkin and McWilliams 2005, 2008) developed by the University of California, Los An-

geles (UCLA). The UCLA-ROMS model has been widely used for a variety of applications in

coastal oceans, such as simulating circulation (Capet et al. 2004, 2008a,b,c), biogeochemical

processes (Gruber et al. 2006) and sediment transport (Blaas et al. 2007) in the ocean.

ROMS is built on incompressible, hydrostatic, and three-dimensional primitive equations.

It allows free-surface elevation and uses the full equation of state based on potential temper-
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ature and density. It solves the equations by using innovative algorithms for time-stepping,

advection, mixing, and pressure gradient on staggered Arakawa-C grids (Arakawa and Lamb

1977) in horizontal curvilinear coordinates and a generalized terrain-following vertical coor-

dinate with enhanced vertical resolution near the sea surface or bottom (Marchesiello et al.

2003). Using split-explicit time-stepping, ROMS separates barotropic (depth-averaged) and

baroclinic (the residual) modes with external and internal time steps and uses a generalized

forward-backward algorithm for the barotropic modes and a modified predictor-corrector

algorithm with forward-backward feedback for the baroclinic modes. This techinique caters

both computation stability and numerical accuracy (Shchepetkin and McWilliams 2008). For

advection, ROMS uses a third-order upstream-biased scheme in the horizontal and a fourth-

order centered scheme in the vertical. Vertical mixing in the surface boundary layers and

in the ocean interior is addressed by a non-local K-profile parameterization (KPP) scheme

(Large et al. 1994) with good performance in penetrating well from the surface boundary

layers into a stable thermocline in convective and wind-driven cases and producing realis-

tic exchanges of properties between the mixed layer and thermocline when comparing with

observations. The pressure gradient force is computed by a high-order, density-Jacobian

algorithm which results in very accurate hydrostatic balance and retains the accuracy with

nonuniform vertical grids at relatively coarse resolution (Shchepetkin and McWilliams 2003).

The open lateral boundaries in the ROMS is addressed by using an adaptive algorithm which

combines an outward radiation condition and a flow-adaptive nudging toward prescribed ex-

ternal condition and deals with outward and inward flow separately (Marchesiello et al.

2001).

The model has both idealized and realistic configurations, which are distinct in the treat-

ment of bathymetry. We initially use the idealized version as Capet et al. (2008a) over the

central California coast. This version of ROMS has been tested by Capet et al. (2008a,b,c)

and their results showed that it can simulate many unique features observed in the California

Current system, such as coastal upwelling, mesoscale eddies and surface mesoscale frontal
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behavior.

For our study, the model domain extends from 31.6oN to 40.4oN in the latitude and from

120.3oW to 131.1oW in the longitude (see shaded region in Fig. 1(a)). In the idealized

configuration, the model coastline is straight and the ocean bottom is flat with uniform

depth of 3500 m. The resolution is about 7 km in the horizontal and 40 uneven grid levels

in the vertical with more levels in the upper ocean (about 15 levels above 50-m depth) and

fewer levels in the lower ocean (see Fig. 1(b)). The open-ocean boundary is provided by a

ROMS run with the same topography, coastline and surface forcings, but a coarser resolution

over a larger domain. The atmospheric forcing (momentum, freshwater and heat fluxes)

is constantly given by Comprehensive Ocean-Atmosphere Dataset (COADS) climatological

fields for July. The model outputs ocean current (u cross-shore, v along-shore), potential

temperature (T ) and salinity (S), and sea surface height (η) every six hours.

2.2. DA Method - LETKF

Data assimilation is a procedure that optimally combines information from a prior short-

range forecast (i.e. background) and recent observations to estimate current state (i.e. anal-

ysis) based on forecast and observation error statistics. Following the notation conventions

suggested by Ide et al. (1997), the model state is usually indicated by a vector x ∈ RN and a

superscript b (a) on it denotes background (analysis) state. For the ROMS, the state vector

x is composed of ocean current (u cross-shore, v along-shore), potential temperature (T ) and

salinity (S), and sea surface height (η). The observation vector is denoted by yo ∈ RL.

In this project, the local ensemble transform Kalman filter (LETKF) (Hunt et al. 2007)

is chosen for the DA system to estimate the analysis state xa. The notation used in the

LETKF is described in Table 1. From a variational point of view, the analysis mean x̄a is

generated by minimizing the Kalman filter cost function:

J(x) = (x− x̄b)T(Pb)−1(x− x̄b) + [yo − h(x)]TR−1[yo − h(x)] (1)
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Fig. 1 Horizontal (a) and vertical (b) distribution of observing networking assimilated in

the ROMS-LETKF. Shaded field is nature temperature.

where x̄b ∈ RN stands for the background ensemble mean, Pb ∈ RN×N the background

error covariance in ensemble space computed from background ensemble perturbations Xb ∈

RN×K : Pb = 1
K−1

Xb(Xb)T, h the nonlinear observation operator, and R ∈ RL×L observation

error covariance. The LETKF minimizes the Kalman filter cost function that is constructed

in the ensemble space through the transformation x = x̄b + Xbw:

J̃∗(w) = (K − 1)wTw + [yo − ȳb − Ybw]TR−1[yo − ȳb − Ybw] (2)

where w ∈ RK in ensemble space denotes a weight vector of Xb; ȳb ≈ H(x̄b) ∈ RL is

background ensemble mean transformed to the observation space through H which is the
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Table 1 Notation for LETKF and adaptive inflation

Variable Description

N number of model variables

K ensemble member size

k ensemble index

L number of observations

()T transpose of a matrix or a vector

()[l] a quantity defined on a local region centered at the analysis grid point l

xb(k) background state vector of the kth ensemble member with dimension RN

x̄b background ensemble mean with dimension RN

Xb background perturbation from ensemble mean with dimension RN×K

Pb background error covariance matrix with dimension RN×N

h nonlinear observation operator projecting the background xb to the observation space

H linear tangent matrix of h with dimension RL×N

yo observations with dimension RL

R observation covariance matrix with dimension RL×L

xa(k) analysis state vector of the kth ensemble member with dimension RN

x̄a analysis ensemble mean with dimension RN

Xa analysis perturbation from ensemble mean with dimension RN×K

α inflation factor

I identity matrix

tangent linear form of h; Yb ≈ H(Xb) ∈ RL×K is background ensemble perturbation in the

observation space.

In the w coordinate, the background mean w̄b = 0 and background error covariance

P̃
b

= (K − 1)−1I. The solution of minimizing the cost function in ensemble space is the

analysis weight vector w̄a:

P̃
a

= [(K − 1)I + (Yb)TR−1(Yb)]−1 (3)

w̄a = P̃
a
(Yb)TR−1(yo − ȳb) (4)

where P̃
a ∈ RK×K is analysis error covariance matrix in the ensemble space. The analysis

spread is a combination of background spread weighted by Wa = [(K − 1)P̃
a
]1/2.

The LETKF computes the analysis at each grid point. In addition, in order to reduce
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the effect of rank deficiency, the LETKF assimilates observations within a certain distance

from each grid point and R−1 is thus substituted with R−1
[l] , where the subscript [l] stands

for the quantity defined on a local area centered at the analysis grid point l. Hence, w̄a,

P̃
a

and Wa are actually performed in local areas. Moreover, to avoid underestimating the

error covariance, the LETKF inflates background perturbations by dividing by the inflation

parameter α in the first term of P̃
a
. α could be either a constant for all model grid points or

varying locally where α is replaced by α[l] (see Section 3.1.1 for details). Besides, the LETKF

could be extended to 4D-LETKF which assimilates observations yo not only collected at the

analysis time. Assuming there are totally tn observations in an analysis cycle, therefore,

when assimilating asynchronous observations in local areas and applying inflation, P̃
a
, w̄a

and Wa are

P̃
a

[l] =

[
(K − 1)

α
I +

τj=tn∑
τj=1

(Yb
[l](τj))

TR−1
[l] (τj)(Y

b
[l](τj))

]−1

(5)

w̄a
[l] = P̃

a

[l]

{τj=tn∑
τj=1

(Yb
[l](τj))

TR−1
[l] (τj)[y

o
[l](τj)− ȳb[l](τj)]

}
(6)

Wa
[l] = [(K − 1)P̃

a

[l]]
1/2 (7)

where τj represents the time within an analysis cycle, τj = 1 is the first observation right after

the previous analysis cycle and τj = tn is the last observation within the current analysis

cycle.

The analysis ensemble mean x̄a and perturbation Xa are calculated locally.

x̄a[l] = x̄b[l] + Xb
[l]w̄

a
[l] (8)

Xa
[l] = Xb

[l]W
a
[l] (9)

The analysis state vector of the kth ensemble member is obtained in model space by

xa(k) = x̄a + Xa(k) (10)
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Therefore, apart from estimating the time-evolving background error covariance including

flow-dependent information, the LETKF has several other advantages. Firstly, the analysis

could be calculated locally at each model grid point using surrounding observations. This

ameliorates the problem of rank deficiency due to finite ensemble size. Secondly, performing

the analysis cycle at each grid point allows the implementation of efficient parallel compu-

tation. Thirdly, the portable algorithm could be easily coupled with other techniques, such

as localization (see Section 1.2.1 for details), inflation (see Section 3.1.1 for details) and/or

asynchronous observations, to improve analysis accuracy (Hunt et al. 2007).

3. Results

3.1. Experiments with ROMS-LETKF

Miyoshi et al. (2010) has coupled the LETKF with the idealized-configured ROMS

(named as ROMS-LETKF). All experiments that have been done so far are based on this

ROMS-LETKF system. The ROMS-LETKF operates localization techniques on the inverse

observation error covariance in both horizontal and vertical directions. Basic parameters

used in the ROMS-LETKF are listed in Table 2.

Table 2 LETKF parameters

Parameters Corresponding Value

Ensemble size 20

Horizontal localization scale 5 grids (i.e. 35 km)

Vertical localization scale 50 m

The identical twin OSSEs are conducted under the perfect model assumption. The nature

run (considered as truth) is obtained by running the ROMS itself for almost one year after

spinning up for about four years. Synthetic observations are then generated from the nature

run by adding Gaussian random error to the true state. The observation error standard

deviations of each variables are given in Table 3. The variables are observed in a relatively
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realistic observing network (see Fig. 1): the current (u, v) and sea surface height (η) are

only observed every 5 grid points at surface as orthogonally mapping HF radar velocity and

satellite observations, and potential temperature (T ) and salinity (S) are observed vertically

in 17 layers from surface to 400 m beneath as glider observations. No observations are

available in deep ocean.

Table 3 Standard deviation of observation errors for assimilated variables

Observation Type u v T S η

Standard Deviation of Error 0.1m/s 0.1 m/s 1 K 0.1 psu 0.03 m

The 20 ensemble members in the ROMS-LETKF are randomly picked from the four-

year spin up period of the nature run at initial time. The lateral boundary conditions

and the atmospheric forcing for the 20 members are the same as those for the nature run.

Observations are assimilated every six hours. All experiments are integrated for two months.

3.1.1) Parameters for Adaptive Inflation

Localization and inflation are two essential aspects to improve analysis accuracy in an

EnKF method. We firstly concentrate on two issues in the LETKF, inflation and localization,

which are discussed as follows.

Inflation is a technique that expands the ensemble perturbations to avoid underestimat-

ing the error covariance. It can be implemented through (i) simply multiplying background

ensemble perturbations by a factor slightly larger than 1, i.e. multiplicative inflation (An-

derson and Anderson 1999; Hamill et al. 2001) ; (ii) adding a small random perturbation

to background ensemble spread, i.e. additive inflation (Ott et al. 2004; Whitaker et al.

2008; Houtekamer et al. 2009); (iii) linearly combined background and analysis ensemble

perturbations, i.e. relaxation-to-prior method (Zhang et al. 2004); or (iv) adaptively esti-

mating multiplicative inflation parameters. i.e. adaptive inflation (Anderson 2007, 2009; Li

et al. 2009; Miyoshi 2011). The former three methods are required manually tuning their
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parameters, while the adaptive inflation does not. The ROMS-LETKF provides several op-

tions (multiplicative, additive, and adaptive) for covariance inflation. We apply the adaptive

inflation in our experiments.

In the adaptive inflation of the ROMS-LETKF, the inflation parameter α is updated by

the innovation statistics at each grid point and each data assimilation interval based on the

Gaussian assumption (Miyoshi 2011) and thus we use α[l] here instead. The initial value of

background inflation parameter ᾱb[l] and its variance νb[l] are prescribed to update the inflation

parameter and need to be manually tunned.

3.1.2) Observation Influence and Inflation Impacts

The observations are usually concentrated in the upper ocean. In our experiments, if not

specifically mentioned, T and S observations are only down to 400 m beneath and there are

no observations below 400 m (see Fig. 1(b)). In the current version of the ROMS-LETKF,

the vertical localization scaling is constantly set as 50 m. Assuming the Gaussian distribution

of the observation influence, this implies that the observation influence ends around 580 m

beneath if the deepest observation is made at 400 m below the surface. In the experiment

using adaptive inflation with 1% initial inflation (i.e. Exp adpinfl.v1 in Table 4), the vertical

profiles of the analysis RMSEs and ensemble spreads averaged on the whole model domain

have a significant peak around level 12 (≈ -544 m) (see the blue lines in Fig. 2). These peaks

in the vertical analysis RMSEs and spreads are shown to move up or down if the observations

are made shallower or deeper. Hence, the peak in the vertical analysis RMSEs is thought

as the results from the termination of observation influence and the implementation of 1%

inflation in the deep ocean.

This kind of peaks can be dramatically reduced in two ways. One is simply setting the

initial inflation to zero in the adaptive inflation (i.e. Exp adpinfl.v2 in Table 4) and the

other is manually adjusting the inflation gradually to zero at the level where the observation

influence terminates (i.e. Exp adpinfl.v3 in Table 4). Both ways suggest no inflation for no
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Table 4 Experiments design

Experiments
Adaptive inflation Adaptive inflation

Adaptive + manually

adjusted inflation

Exp adpinfl.v1 Exp adpinfl.v2 Exp adpinfl.v3

Inflation

Parameters

1% at initial; 0% at initial; 1% at initial;

If inflation, ᾱb[l] decrease

to 10%ᾱb[l] level 13, to

5%ᾱb[l] at level 12; 0 in-

flation below level 12

observations. Based on our two-month primary tests (see Table 4 for experiments design),

the two ways show same ability to reduce the peak in the vertical analysis spreads (see Fig.

2).

3.1.3) Extension to 4DLETKF

The extension to 4DLETKF is also tested in the OSSE framework to assimilate asyn-

chronous observations taken at intermediate times during an analysis cycle. The 4DLETKF

OSSE is initially conducted to assimilate a single surface temperature observation at the

beginning of a 24-hr assimilation window. The evolution of the analysis increment during

the 24-hr analysis cycle is shown on Fig. 3.

On Fig. 3 (a)-(c), the analysis increment evolves and moves along the background flow

through the entire cycle even the observation is assimilated at the beginning. The movement

of the center of the analysis increment during the assimilation window is clearly observed on

Fig. 3(d). Hence, 4DLETKF is capable to capture the evolution of the increments within

an analysis cycle.
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Fig. 2 Vertical profile of analysis RMSEs (upper) and spread (bottom) averaged in the

entire model domain and the last month for four 3D variables in the Exp adpinfl.v1 (blue),

Exp adpinfl.v2 (cyan), Exp adpinfl.v3 (pink) and Exp Noobs (black) (Exp Noobs is the

experiments without assimilating observations). The green solid lines indicate standard

deviation of the corresponding observation errors.

3.2. Step-wise linear vertical localization for stratification

The current LETKF applies a Gaussian distance-dependent function to the inverse obser-

vation error covariance R−1 in both horizontal and vertical directions to remove the spurious

impact of the observations far away from the analysis grid point. The vertical localization

scale is set as a constant, 50m. Using constant vertical localization scale in the upper ocean

allows the surface observations to impact the upper 180m in the vertical. Most of the obser-
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Fig. 3 Temperature analysis increments at the surface of a 4DLETKF experiment assimi-

lating a single sea surface temperature observation at the beginning of the 24-hr assimilation

window. T increment (shaded) and background (contours) at (a) the beginning of an anal-

ysis cycle (t = -12hr), (b) the middle of the analysis cycle (t = 0hr), and (c) the end of

the analysis cycle (t = +9hr); The white dots on (a),(b), and (c) indicate the location of

the single T observation. (d) the movement of T increments during the analysis cycle. The

cyan, white, and red dots on (d) are the center of analysis increment at t= -12 hr, 0hr and

+9hr, respectively.

vations concentrate at the surface, hence the constant vertical localization scale works well

in the model level 40-26. Due to the dramatical decrease in the number of observation be-

neath the surface and the increase in the depth among the model vertical levels, the constant

vertical localization could not handle this situation very well. Hence, the manually setup

step-wise linear vertical localization is proposed initially to test their impacts on the LETKF

performance before applying dynamically-varying vertical localization into the LETKF.

Two types of step-wise linear vertical localization scale are designed as shown in Fig.

4. The LETKF using both step-wise linear vertical localization scales assimilates surface

observations in the top 180m (model level 40-19), as the LETKF using constant vertical

localization scale does. Between 200m and 1000m (level 18- 8), the LETKF using both

step-wise linear vertical localization scales assimilates some amount of observations, and
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the number of assimilated observation decreases as the model depth increases; whereas the

LETKF using constant vertical localization scales cuts off the observation influence below

the depth of 600m. Below the depth of 1200m (model level 7-1), the LETKF with vertical

localization scale in Fig.4(a) does not assimilate any observations, while the LETKF with

vertical localization scale in Fig. 4(b) still assimilates the observation at 400m.

The impacts of step-wise linear vertical localization scale are examined by comparing

with the LETKF experiments using constant vertical localization scale and infinite vertical

localization scale in which all the observation are assimilated in every model level, i.e. no

vertical localization is used. The inflation scheme is the same as in Exp adpinfl.v2 in Table

4.

Fig. 4 Step-wise linear vertical localization scale. (a) σobsv=50m for the model level 19-40,

and 200m for the model level 7-1, and linearly increasing from 50m to 200m between the

model level 8-18; (b) σobsv=50m for the model level 19-40, linearly increasing from 50m to

200m between the model level 8-18, and then linearly increasing down to the ocean bottom.

On Fig. 5, the analysis rmse of u, v, T and S is smaller in the experiments using step-
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Fig. 5 Vertical profile of analysis rmse averaged over the entire model domain and the last

month for (a)u, (b) v, (c) T , and (d) S. Blue is for the constant vertical localization scale,

cyan for the step-wise linear vertical localization scale in Fig.4(a), pink for the step-wise

linear vertical localization scale in Fig. 4(b), orange for no vertical localization used and

black for no observation is assimilated.

wise linear vertical localization length scale than the ones using constant vertical localization

scale, especially in the upper 400m (around the model level 40 -12). The difference in the

LETKF performance between the two types of step-wise linear vertical localization scales is

subtle. Compared with the LETKF with no use of vertical localization, i.e. assimilating all

observations at every model level, the LETKF with step-wise linear vertical localization has

better performance for temperature and salinity in the entire vertical column, but not for

currents beneath 180m.

3.3. Dynamic Constraints

Dynamic constraints in the LETKF could be realized with the help of the variable lo-

calization (Kang et al. 2011) which zeros out the corresponding parts in background error

covariance between the uncorrelated variables. In our work, we would like to use two sets of
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control variables for dynamic constraints.

Two main dynamic balances, hydrostatic and geostrophic balances, are considered in the

LETKF. The hydrostatic static balance is

∂p

∂z
= −(ρ0 + ρ)g (11)

where p is seawater pressure, g gravitational acceleration, ρ0 the Boussinesq approximation

of the seawater mean density and ρ seawater density anomaly. The geostrophic balance is

ug = − g
f

∂η

∂y
(12)

vg =
g

f

∂η

∂x
(13)

where f is Coriolis parameter and η sea surface height.

According to the unique features in the coastal ocean, we combine the basic strategies

of Weaver et al. (2005) and Li et al. (2008): (i) Temperature T and salinity S are used to

separate other model state variables into balanced and unbalanced parts based on underlying

hydrostatic and geostrophic balances; (ii) A new control vector is created by original T and

S but unbalanced part of η, u and v; (iii) This new control vector is used in the LETKF

incorporated with variable localization (Kang et al. 2011) to generate ensemble analysis.

Similar to the formulation in Li et al. (2008), the dynamic balances are applied in to

decompose the sea surface height η to steric and nonsteric components and u/v to geostrophic

and ageostrophic parts:

xη = ΠxTS + xη′ (14)

xuv = ΓTSxTS + Γη′xη′ + xu′′v′′ (15)

where xη′ is nonsteric sea surface height, xu′′v′′ is ageostrophic u/v.
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Hence, the background state vector and the new control vector become:

xb = zzzxbnew =


1 0 0

Π 1 0

ΓTS Γη′ 1




xTS

xη′

xu′′v′′

 (16)

xT
new = (xT

TS, x
T
η′
, xT

u′′v′′
) (17)

where zzz is transformation matrix.

Then variable localization is applied to transform the new background ensemble pertur-

bation and the new cost function in ensemble space becomes:

xnew − xbnew = Xb
newwnew =


Xb
TS 0 0

0 Xb
η′ 0

0 0 Xb
u′′v′′




wTS

wη′

wu′′v′′

 (18)

J̃∗(wnew) = (K − 1)wT
newwnew + (d−HzzzXb

newwnew)TR−1(d−HzzzXb
newwnew) (19)

where the innovation d and observation error covariance R do not change. The solution of

minimizing the new cost function is

w̄a
new = P̃

a

new(HzzzXb
new)TR−1d (20)

P̃
a

new = [(K − 1)I + (HzzzXb
new)TR−1(HzzzXb

new)]−1 (21)

(22)

The transformation matrix zzz is used to transform the new analysis increment back to the

original:

∆x̄a = zzzδx̄anew = zzzXb
neww̄a

new =


Xb
TSw̄a

TS

ΠXb
TSw̄a

TS + Xb
η′ w̄

a
η′

ΓTSXb
TSw̄a

TS + Γη′X
b
η
′ w̄a

η′
+ Xb

u′′v′′ w̄
a
u′′v′′

 (23)

Single observation experiments with/without dynamic constraints and variable localiza-

tion are done to primarily test the impact of dynamic constraints in the 3DLETKF frame-

work. The vertical structure of the LETKF analysis increments of experiments assimilating
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single sea surface height are shown on Fig. 6. Constant vertical localization is applied in

both single observation experiments.

Fig. 6 Vertical cross section of analysis increments of u (upper) and temperature (bottom)

of the single sea surface height observation experiments with and without dynamic con-

straint. Black dot at the surface level indicates the location of the single sea surface height

observation. (a) u increment in LETKF without constraint; (b) T increment in LETKF

without constraint; (c) u increment in LETKF with constraint; (d) T increment in LETKF

with constraint

Due to the vertical localization with constant vertical localization scale, u and T on

Fig. 6(a) and (b) are updated within the vertical localization influence radius in the LETKF

experiment. After applying dynamic constraint and variable localization, u and T on Fig.6(c)
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and (d) are updated even outside the vertical localization radius. This is because the steric

η is due to the thermal expansion of the whole sea water column. Through the dynamic

constraints and variable localization in the LETKF, the increment in the steric η is passed

to T and S in the whole column even the vertical localization is applied.

4. Concluding Remarks

4.1. Summary

The LETKF coupled with a regional coastal ocean model (ROMS) is used in this project

to study the stratification and dynamic constraints of the coastal ocean in the data assimi-

lation under the OSSEs framework along the Central California coastal area.

The primary results show that the LETKF works well to assimilate remote and in-situ

observations along the Central California coastal area. Due to the lack of observation in

the deep ocean, the inflation in the LETKF should be turned off outside the observation

influence radius to avoid large error near the edge of observation influence radius. The

extension of LETKF to 4DLETKF can assimilate the asynchronous observations and is

capable to capture the evolution of the increments within an analysis cycle. The LETKF

using the step-wise linear vertical localization scale gives smaller analysis rmse of u, v, T and

S compared with the constant vertical localization scale, especially in the upper 400m where

in-situ observations are collected. Based on the results of single observation experiments,

using the LETKF with dynamic constraints and variable localization, the increment in steric

η can be passed to T and S in the whole vertical column even the vertical localization is

applied.

4.2. Potential Development

Potential development related to the aspects in the introduction are as follows:
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4.2.1) Stratification

As the primary results we showed, the constant vertical localization scales works quite

well in the upper ocean where dense observations are available. In the deep ocean with

sparse or even no observations, the analysis RMSEs are not as good as we expected. Besides

the difference in the observation density between the upper and deep ocean, the oceanic

motion in different layers has different scales. Testing of manually setup step-wise linear

vertical localization length could improve the LETKF performance to some extent, it would

be more reasonable to use the vertical localization scale dynamically associated with the

vertical stratification of the ocean in order to grasp more information from observations.

First, the depths of each ocean layers can be determined. For example, the mixed layer

depth (MLD) could be calculated based on an optimal definition proposed by Kara et al.

(2000). Then, we could use a small scale in the mixed layer, a large scale in the deep ocean

and a transition between the two scales in thermocline. Within the mixed layer and the deep

ocean, the scales could be set as constants. Based on Miyoshi and Kunii (2012), the slope of

the transition between small and larger localization scales matters. a dynamically-varying

transition in the vertical localization scales could be configured near the edge between two

layers and also within the thermocline, vertically uneven scales with smaller scale above the

edge and larger scale below the edge (Personal conversation with Dr. T. Miyoshi). In the

meantime, the adaptive inflation in experiments using vertically-varying localization scales

also needs to be paid attention to.

4.2.2) Dynamic Constraints

The impact of dynamic constraint is initially examined in the single observation ex-

periments. The further investigation can be done through the comparison between full

observation experiments.

In the single observation experiments, we used ageostrophic currents to construct new
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state vector in the LETKF with dynamic constraint. An alternative option of constructing

new state vector is using ageostrophic streamfunction and velocity potential, rather than

ageostrophic currents based on the following relationship:

u = −∂ψ
∂y

+
∂χ

∂x
(24)

v =
∂ψ

∂x
+
∂χ

∂y
(25)

The reason of using streamfunction and velocity potential instead of horizontal velocity com-

ponents is homogeneous and isotropic self-error covariance of ageostrophic streamfunction

and velocity potential and zero cross-error covariance of them.

The experiments with dynamic constraints using streamfunction and velocity potential

can also be conducted and compared with these using horizontal velocity components and

these without constraints.

4.2.3) Multiscale LETKF

The multiscale method introduced by Li et al. (2012) can be employed in the LETKF

scheme to address multiscale dynamics and observations following the similar steps as Li

et al. (2012). (i) Background state vector xb is divided large (denoted by subscript L) and

small (denoted by subscript S) scale components, namely xb = xbL + xbS, by using an appro-

priate spatial filter. Due to the complex coastline geometry in the coastal area, a Gaussian

horizontal smoothing function, instead of trigonometric functions, is used to separate large

and small scale components. The smoothing length scale in the Gaussian smoothing function

is dynamically determined from the Rossby deformation radius. (ii) In the meantime, the

observations yo are also categorized into dense (denoted by superscript d) and coarse (de-

noted by superscript c) observations in space, yod and yoc, based on the density of observing

networks and an assumption that the errors of yod and yoc are uncorrelated are made. The

dense observations yod could be partitioned into large and small parts using the spatial filter:

yod = yodL + yodS , while the coarse observations yoc only contain large-scale information and
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could not be partitioned. Rd
L, Rd

S and Rc are corresponding error covariances of yodL , yodS and

yoc. (iii) The multiscale LETKF (MS-LETKF) is be formulated by minimizing the Kalman

filter cost functions of large and small-scale components which can be built in the ensemble

space on the basis of the Multiscale-3Dvar formulation in Li et al. (2012). Details for the

MS-LETKF formulation are shown in the Appendix A. (iv) Dynamic constraints can also be

applied in the MS-LETKF with different consideration for large- and small- scale component

respectively. (v) The distance-dependent localization function, which can handle the strati-

fication in the vertical, can be applied to the inverse of observation error covariance, (Rd
L)−1,

(Rd
S)−1 and (Rc)−1 in the MS-LETKF. (vi) The adaptive inflation can be implemented in

the MS-LETKF as well. The inflation parameters can be tuned and updated for large and

small scale components separately. (vii) The comparison between the experiments using the

MS-LETKF and using the LETKF can be done to test the performance of the MS-LETKF.

4.2.4) Assimilation of HF Radar Radial Velocity

So far we have done a series of OSSEs of HF radar-mapped surface velocity vector, which

covers the entire model domain. The LETKF formulation and coding based on Shulman

and Paduan (2009) to assimilate radial velocity.

At the beginning stage, the observing network of HF radar radial velocity can be built in

the OSSE. The observation error covariance Rp is created for radials and substitutes for R in

the LETKF. The observation operator h in the LETKF formulation can then be changed to

hR that interpolates background velocity vectors on model grids to the observation locations

and also projects the velocity onto the direction of the corresponding radial, transforming

vectors to scalars. The linear tangent matrix of h, namely H, can be replaced by HR. HT
R

transforms the scalars back to vectors at observation locations and interpolates the vector

back to the model grid points. In the LETKF, the background perturbation in observation

space is revised to Yb
R = HR(Xb).
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APPENDIX A

The Formulation of Multiscale LETKF

The multiscale LETKF (MS-LETKF) is generated by minimizing the Kalman filter cost

function that is constructed in the ensemble space and it is formulated for large and small

scale components respectively.

A1. Separation of Large and Small Scale Components of Background

A Gaussian horizontal smoothing function introduced by Li et al. (2012), rather than

widely used trigonometric functions, is used to separate large and small scale components of

background state vector in each ensemble member owing to the complex coastline geometry

in the coastal area. The Rossby deformation radius is dynamically chosen as the smoothing

length scale in Gaussin smoothing function. Hence, the background state vector of kth

ensemble member, xb(k), is divided into xb(k) = xb(k)L + xb(k)S . The corresponding background

error covariance is denoted by Pb
L and Pb

S.

A2. Separation of Dense and Coarse Observations

The observations yo are separated into dense and coarse observations based on the spatial

resolution of their observing networks: yod and yoc and the errors of yod and yoc are assumed to

be uncorrelated with each other. Moreover, the dense observation contains large and small

scale information which could be separated by the Gaussian smoothing function: yod =

yodL + yodS , whereas the coarse observations could not be separated because they only have

large scale information.

The nonlinear observation operators for dense and coarse observations are denoted as hd
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and hc and their tangent linear forms are Hd and Hc, respectively. Hence, the large scale

background components in the dense and coarse observation space are represented by

hd(xbL) ≈ Hdx̄bL + HdXb
L = ȳbdL + Ybd

L (A1)

hc(xbL) ≈ Hcx̄bL + HcXb
L = ȳbcL + Ybc

L (A2)

Similarly, the small scale background component in the dense and coarse observation space

are

hd(xbS) ≈ Hdx̄bS + HdXb
S = ȳbdS + Ybd

S (A3)

hc(xbS) ≈ Hcx̄bS + HcXb
S = ȳbcS + Ybc

S (A4)

A3. Large Scale Component of MS-LETKF

The Kalman filter cost function for large scale component is constructed according to Li

et al. (2012):

JL(xL) = (xL − x̄bL)T(Pb
L)−1(xL − x̄bL) + [yodL − hd(xL)]T(Rd

L)−1[yodL − hd(xL)]

+ [yoc − hc(xL)− ȳbcS ]T[Rc + 1
(K−1)

Ybc
S (Ybc

S )T]−1[yoc − hc(xL)− ȳbcS ]

(A5)

where the additional term in the error covariance of coarse observation, 1
(K−1)

Ybc
S (Ybc

S )T,

is the representativeness error of small scale component. Through the transformation xL =

x̄bL+Xb
LwL for large scale component, the Kalman filter cost function for large scale component

is built in the ensemble space to assimilate both dense and coarse observations:

J̃∗
L(wL) = (K − 1)wT

LwL + (yodL − ȳbdL − Yb
LwL)T(Rd

L)−1(yodL − ȳbdL − Ybd
L wL)

+ (yoc − ȳbc − Ybc
L wL)T[Rc + 1

(K−1)
Ybc

S (Ybc
S )T]−1(yoc − ȳbc − Yb

LwL)

(A6)

where ȳbc = Hcx̄b = Hc(x̄bL + x̄bS) = ȳbcL + ȳbcS .

By minimizing the large scale Kalman filter cost function, we obtained

P̃
a

L = [(K − 1)I + (Ybd
L )T(Rd

L)−1(Ybd
L ) + (Ybc

L )T[Rc + 1
(K−1)

Ybc
S (Ybc

S )T]−1(Ybc
L )]−1 (A7)

w̄a
L = P̃

a

L[(Ybd
L )T(Rd

L)−1(yodL − ȳbdL ) + (Ybc
L )T[Rc + 1

(K−1)
Ybc

S (Ybc
S )T]−1(yoc − ȳbc)] (A8)
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A4. Small Scale Component of MS-LETKF

For the small scale component, Li et al. (2012) utilized the information from large scale

analysis, i.e. yodL −Hdx̄aL = yodL − ȳadL , to reduce undesirably large analysis increment at the

surrounding points close to the dense observation area. In terms of Li et al. (2012), the

Kalman filter cost function for small scale component

JS(xS) = (xS − x̄bS)T(Pb
S)−1(xS − x̄bS)

+ [yodS − hd(xS) + (yodL − ȳadL )]T[Rd + 1
(K−1)

Yad
L (Yad

L )T]−1[yodS − hd(xS) + (yodL − ȳadL )]

+ [yoc − hc(xS)− ȳbcL ]T[Rc + 1
(K−1)

Ybc
L (Ybc

L )T]−1[yoc − hc(xS)− ȳbcL ]

(A9)

could be constructed in ensemble space through the transformations of small scale part:

xS = x̄bS + Xb
SwS:

J̃∗
S(wS) = (K − 1)wT

SwS

+ (yod − ȳbdS − Ybd
S wS − ȳadL )T[Rd + 1

(K−1)
Yad

L (Yad
L )T]−1(yod − ȳbdS − Ybd

S wS − ȳadL )

+ (yoc − ȳbc − Ybc
S wS)T[Rc + 1

(K−1)
Ybc

L (Ybc
L )T]−1(yoc − ȳbc − Ybc

S wS)

(A10)

The solution of minimizing the Kalman filter cost function for small scale component is:

P̃
a

S = [(K − 1)I + (Ybd
S )T[Rd + 1

(K−1)
Yad

L (Yad
L )T]−1(Ybd

S ) + (Ybc
S )T[Rc + 1

(K−1)
Ybc

L (Ybc
L )T]−1(Ybc

S )]−1

(A11)

w̄a
S = P̃

a

S[(Ybd
S )T[Rd + 1

(K−1)
Yad

L (Yad
L )T]−1(yod − ȳbdS − ȳadL ) + (Ybc

S )T[Rc + 1
(K−1)

Ybc
L (Ybc

L )T]−1(yoc − ȳbc)]

(A12)
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A5. Analysis in MS-LETKF

The large and small component of analysis ensemble mean and perturbation can be

obtained by

x̄aL = x̄bL + Xb
Lw̄a

L (A13)

Xa
L = Xb

L[(K − 1)P̃
a

L]1/2 (A14)

x̄aS = x̄bS + Xb
Sw̄a

S (A15)

Xa
S = Xb

S[(K − 1)P̃
a

S]1/2 (A16)

The analysis of the kth ensemble member is the sum of large and small components of it

xa(k) = xa(k)L + xa(k)S

= x̄aL + Xa(k)
L + x̄aS + Xa(k)

S

(A17)
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