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 Despite steady improvement in their tropical cyclone (TC) track and intensity 

forecasts over recent decades, operational numerical weather prediction (NWP) models 

still struggle at times in predicting two TC phenomena: climatologically unusual motion 

and rapid intensification (RI). Atlantic TCs typically move clockwise along curved tracks 

skirting the southern, western, and northwestern periphery of the Western Atlantic Ridge. 

Hurricane Joaquin (2015) followed a particularly unusual hairpin loop-shaped track that 

was poorly predicted by most operational NWP models, including the National Centers for 

Environmental Prediction (NCEP) Global Forecast System (GFS). Over recent years, 

considerable interest has also developed in understanding the cause-and-effect relationship 

between RI, defined here as a maximum surface wind (VMAX) intensification rate exceeding 

15 m s-1 (24 h-1), and outbreaks of inner core deep convection, known as convective bursts 

(CBs), that have been observed to precede or coincide with RI in some TCs. A deeper 

physical understanding of the atmospheric processes governing TC unusual motion and RI, 

together with retrospective case study analyses of model forecast errors, will help us to 



identify NWP model components – data assimilation and physical parameterizations, for 

example – that may need further improvement.  

 This research project seeks to (i) identify the atmospheric features that steered 

Hurricane Joaquin (2015) along the southwestward leg of its looping track and (ii) 

investigate the thermodynamic and three-dimensional characteristics of CBs as a first step 

toward developing a more comprehensive understanding of how CBs may facilitate RI. To 

accomplish (i), we generate a high-resolution Weather Research and Forecasting (WRF) 

model Control (CTL) simulation of Hurricane Joaquin (2015) that reproduces its looping 

track and intensification trends. Comparing CTL forecast fields against sensitivity WRF 

simulations initialized from perturbed analyses and against two representative GFS 

forecasts, we find that a sufficiently strong mid-to-upper level ridge northwest of Joaquin 

and a vortex sufficiently deep to interact with northeasterly geostrophic flows surrounding 

the ridge are both necessary for steering Joaquin southwestward. These results suggest that 

more accurate track forecasts for TCs developing in vertically sheared environments may 

be at least partly contingent on improved vortex initialization; for these cases, assimilation 

of more inner-core observations such as cloudy radiances and airborne radar-derived winds 

could be particularly beneficial. 

We address (ii) by comparing parcel traces, thermodynamic variables, and vertical 

accelerations along trajectories run through CB updraft cores with trajectories 

representative of the background eyewall ascent in a Hurricane Wilma (2005) WRF 

simulation. We compute three-dimensional trajectories from WRF-output winds using a 

model developed for this study that implements an experimental advection correction 

algorithm designed to reduce time interpolation errors, with the latter confirmed by tests 



on analytical and numerically-simulated flows. Results show that Wilma’s CBs are 

characterized by significant thermal buoyancy, particularly in the upper troposphere; this 

is consistent with their lower environmental air entrainment rates and reduced midlevel 

hydrometeor loading relative to the background ascent, and with their updrafts being rooted 

in portions of the boundary layer where ocean surface heat and moisture fluxes are locally 

higher.  
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Figure 3.1 Schematic summarizing the cycled data assimilation methodology used for 
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Figure 3.2 (a) Geopotential height differences between the 0600 UTC 29 Sep 
NORADIANCES and CTL analyses (NORADIANCES - CTL), computed at each pressure 
level and then averaged over the 850-600 hPa layer (shaded, m) with 700-hPa 
NORADIANCES geopotential height (contoured, m) and horizontal flow vectors (m s-1). 
(b) As in (a) but for geopotential height differences averaged over the 600-250 hPa layer, 
with 400-hPa NORADIANCES geopotential height and winds. Black triangle denotes the 
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resolution from the NORADIANCES analysis (red line), superimposed over 96-h CTL and 
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Figure 3.4 Vertical profiles comparing the prior (i.e., background) and posterior (i.e., 
analysis) WRF-DART ensemble mean RMSE (black) with the total spread (red, see text 
for definition). These statistics are computed over the WRF 9-km domain for radiosonde 
(a) u-winds, (b) v-winds, (c) temperature, and (d) specific humidity. Solid and dashed lines 
represent the prior and posterior statistics, respectively. Also shown for each height bin are 
the number of observations processed (open circles) and number of observations that were 
assimilated (asterisks). The abscissa units are m s-1 for (a) and (b), K for (c), and g kg-1 for 
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Figure 3.5 As in Fig. 3.4, but for AMV (a) u-winds and (b) v-winds…………………...82 
 
Figure 4.1 Illustration of the advection correction principle for an updraft waveform w(x,t)  
translating in the positive-x direction with velocity U. For x = p, the waveform amplitude 
at time t = t0 + Dt / 2 is estimated by temporal interpolation between data input times t = t0 

and t = t0 + Dt. Simple linear interpolation (LI) in time from x = p in the fixed reference 
frame substantially underestimates w, whereas advection correction (AC) time 
interpolation from x = p¢ in the reference frame translating with velocity U yields the true 
w amplitude……………………………………………………………………………....86 
 
Figure 4.2 (a) Block diagram outlining the keys steps of the advection correction 
algorithm. (b) Schematic illustrating advection correction in a cylindrical coordinate 
framework. An updraft element (solid green contours) translates counterclockwise with 
angular velocity W and radially outward with linear velocity Ur between times t = t0 and t 
= t0 + Dt, where its amplitude is known. Assuming W and Ur are also known, the updraft 
amplitude at an arbitrary intermediate time (dashed green contours) can be estimated by 
launching virtual particles (red arrows) to the moving reference frame coordinates (r¢,l¢) 
at times t = t0 and t = t0 + Dt and then linearly interpolating the updraft amplitude in time 
from these two positions………………………………………………………………….95 
 
Figure 4.3 (a) Horizontal flow field used for the analytical tests, with streamfunction 
(shaded, ´ 10-3 m2 s-1) and flow vectors (m s-1). Representative 30-m backward trajectories 
for the first analytical test are shown in black, with squares denoting their seeded initial 
positions. (b) Horizontal variation of vertical motion at the initial time (shaded, m s-1) used 
for the second analytical test. This vertical motion pattern translates azimuthally 
counterclockwise and radially outward over time, as shown by the black arrows……….101 
 
Figure 4.4 Cost function J(Ur , W) (shaded, m4s-3 ´ 1.8/p ´ 105)  evaluated for a selected 
subdomain on the analytical flow field shown in Fig. 4.3b for the 5-min data input interval 
(shaded) and the 2.5-min data input interval (gray contours) ending at t = 30 min. To 
compute J, Eq. 4.9 is solved using a range of input Ur and W values, with AAM replaced 
by w. Black arrow points to the local minimum corresponding to the true advective flows 
(i.e. Ur = 8.33 m s-1 , W = 0.1 deg s-1). Letters A, B, and C label spurious local minima (see 
text). Black ́ -symbols (open circles) show first-guess (Ur, W) combinations that converged 
to values close to the true advective flows (converged to spurious solutions) using the 
iterative Gal-Chen procedure with 5-min input data. Black line segments connect 
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intermediate (Ur , W) solutions found over the 20 iterations leading to the final (Ur , W) 
solution, denoted by black triangles, for two selected first-guesses…………………….103 
 
Figure 4.5 Results of the second analytical test showing (a) vertical velocity along a 
representative backward trajectory, with linear interpolation (LI) and advection correction 
(AC) time interpolation methods both tested for 5-m, 2.5-m, 1-m, and 30-s data input times 
and (b) individual height displacement errors as a function of time along all 984 backward 
trajectories from the experiments shown in (a). The 1-m LI trajectory error growth pattern 
(not shown here) closely resembles that of the 5-m AC trajectories. Reference trajectories 
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Figure 4.6 Distribution of vertical velocity (black-solid contours at 1/5/10 m s-1; black-
dotted contours at -2 m s-1) and horizontal storm-relative flow vectors (m s-1) taken from 
the WRF-simulated Hurricane Joaquin (2015) 1-km resolution domain at z = 6 km and t = 
28:00. Four-hour backward trajectories are seeded from this time at every 1-km gridpoint, 
for a total of 10201 trajectories. (a) Differenced 2-h horizontal individual displacement 
errors (DIDEHORIZ) (shaded, every 10 km except every 5 km for |DIDEHORIZ| < 10 km) 
plotted as a function of seed position for ACW. (b) As in (a) but for differenced vertical 
individual displacement errors (DIDEVERT) (shaded, every 1 km except every 0.5 km for 
|DIDEVERT| < 1 km). (c),(d) As in (a) and (b), respectively, but for the ACUVW experiment. 
Horizontal distances shown here and for all subsequent figures, unless otherwise noted, are 
measured in km from the domain center, with negative values for regions south and west 
of the domain center…………………………………………………………………….109 
 
Figure 4.7 Three-dimensional 4-h backward trajectories computed from the Hurricane 
Joaquin (2015) WRF simulation 5-m output using advection correction of the horizontal 
and vertical velocity fields (ACUVW). All trajectories shown here are seeded at z = 6 km, 
forecast hour 28:00, and they are selected from within the rectangular region shown in Fig. 
4.6. They are stratified by final (i.e. forecast hour 24:00) height, with red colors showing 
trajectories originating below z = 1 km (23 total) and blue colors showing trajectories 
originating from above z = 6 km (40 total). Black arrows highlight the convergent 
flowpaths of the two backward trajectory clusters. Horizontal distances are measured from 
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Figure 4.8 (a) Histogram of Differenced horizontal individual displacement errors 
(DIDEHORIZ) for the 10,201 ACUVW trajectories, using a 0.25-km bin width. Blue (red) bars 
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using LI. Lines connect the histogram bin heights for the 10,201 ACW trajectories, with 
green (black) denoting improved (worsened) accuracy. (b) As in (a) but for DIDEVERT. 
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Figure 4.9 (a) Distribution of the model-output total angular velocity (𝜔) (shaded, ´ 300° 
s-1) with storm-relative horizontal flow vectors (m s-1) at z=6 km from the Hurricane 
Joaquin (2015) simulation at 28:00; (b) as in (a) but for the advective component of angular 
velocity (Ω) found by the iterative Gal-Chen procedure using 5-min data output data; (c) 
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as in (b) but after applying a filter to the Gal-Chen Ω	field to remove local discontinuities, 
and (d) as in (b) but from the iterative Gal-Chen procedure using 1-m data. (e) As in (a) 
but for the total radial velocity (ur) (m s-1). (f)-(g) As in (b)-(d) but for the advective 
component of the radial velocity (Ur) (m s-1). Dashed lines in (a),(c),(e), and (g) denote the 
vertical cross section shown in Fig. 4.10, and the black rectangular box corresponds to the 
region highlighted in Fig. 4.6……………………………………………………………114 
 
Figure 4.10 (a) East-west vertical cross section of the model-output total angular velocity 
(𝜔) (shaded, ´ 300° s-1) at the forecast time 28:00 of the simulated Hurricane Joaquin 
(2015), running along the line AB shown in Fig. 4.9. (b) As in (a) but for the advective 
component of the angular velocity (Ω) found using the iterative Gal-Chen procedure over 
the preceding 5-m data output interval and then applying a filter to remove local 
discontinuities. (c) As in (a) but for the model-output total radial velocity (ur) (shaded, m 
s-1), with in-plane flow vectors (m s-1; vertical velocity multiplied by 5) and qe  (K; 350/354 
thin-contoured, 358/362 thick-contoured). (d) As in (b) but for the advective component of 
the radial velocity (Ur) (m s-1). Distances from the 1-km model domain center (km) are 
shown on the abscissa…………………………………………………………………...115 
 
 Figure 4.11 As in Fig. 4.4 but the cost function J(Ur , W) (m6s-3 ´ 9/p ´ 1015)  evaluated 
for a z = 6 km subdomain enclosed within the boxed region shown in Fig. 4.6, computed 
over the 5-min time interval preceding forecast time 28:00……………………………116 
 
Figure 4.12 (a) Distribution of the horizontal storm-relative flow vectors (at forecast time 
27:50), and the vertical component of relative vorticity anomaly (∂v/∂x - ∂u/∂y)´ (shaded, 
´ 10-3 s-1), measured with respect to the local temporal average over the forecast period 
27:30 – 28:30 from the Hurricane Joaquin (2015) WRF simulation 1-km resolution grid at 
z = 6 km. (b) and (c) As in (a) but for forecast times 27:55 and 28:00, respectively. (d)-(f) 
As in (a)-(c) but with perturbation flow vectors measured with respect to the local temporal 
average over the forecast period 27:30 – 28:30. Letter labels track cyclonic flow 
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Figure 4.13 (a) Distribution of qe (shaded, K), vertical velocity (contoured at 5/10/15 m s-

1), and in-plane flow vectors (m s-1) taken from the Hurricane Wilma (2005) prediction at  
z=14 km for forecast time 16:55. Letter labels denote convective burst elements. (b) As in 
(a) but for forecast time 17:00. (c) As in (b) but zoomed in to show the seed positions 
(colored squares) of the convective burst trajectories. Horizontal distances are measured 
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Figure 4.14 Three-dimensional plots showing 8-h trajectories run from the Hurricane 
Wilma (2005) WRF prediction 5-min output, using advection correction time interpolation 
of the vertical velocity field (ACW). Four-hour forward and four-hour backward trajectories 
are seeded from z=14 km at 17:00. Panel (a) shows a cluster of 16 trajectories seeded from 
inside convective burst “A” in Fig. 4.13, while (b) shows 13 representative background 
secondary circulation trajectories. Lines are colored by qe (K) interpolated along each 
trajectory. Purple shading in (a) shows the total (latent + sensible) heat flux (W m-2) from 
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the ocean surface at forecast time 15:00. Horizontal distances are measured from the 
southwestern corner of the 1-km resolution model domain…………………………….122 
 
Figure 4.15 (a) Radius-height projections of the 4-h backward CB “A” trajectories from 
the Hurricane Wilma (2005) WRF simulation (Fig. 4.13c), computed using linear 
interpolation (LI) in time. Orange (green) trajectories are seeded from the r = 20 km (r = 
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As in (b), but for qe (K). (d) As in (b), but for AAM (´ 5 ´ 105 m2 s-1). (e)-(h) As in (a)-(d) 
but for the same trajectories re-run using advection correction of the horizontal and vertical 
velocity fields (ACUVW). (i)-(l) As in (a)-(d) but for the same trajectories re-run using 
advection correction of the vertical velocity field (ACW)………………………………124 
 
Figure 4.16 (a) Vertical velocity (m s-1) plotted as a function of integration time for the 
CB “A” backward trajectories computed using LI, color coded as in Fig. 4.15. Arrows label 
model data output times. (b) As in (a) but for qe (K)……………………………………125 
 
Figure 5.1 (a) WRF-predicted 16:10, z = 14 km temperature anomaly T´(z,t) (shaded, K), 
computed with respect to the 1000 km × 1000 km area-averaged temperature profile 
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(thin black at 2; thick black at 5/10/20/30; dotted blue at -5/-3/-1) and horizontal storm-
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Fig. 5.2 (a) WRF-predicted z = 14 km vertical motion (w, shaded, m s-1) and horizontal 
wind vectors (m s-1) with z = 6 km w (2 m s-1 contoured in black) at 18:00. Green circles 
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element, defined by w > 0 m s-1 and relative humidity > 95%. Distances d1, d2, d3, and d4 
are measured in the four Cardinal directions from the parcel position, denoted by the red 
“X” symbol, to the updraft element boundary. Symbols “dEDGE” and “DAVG” denote the 
smallest distance in any Cardinal direction to the updraft element boundary and the mean 
updraft element diameter, respectively. Environmental 𝜃" (𝜃" ,ENV)  and relative humidity 
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Fig. 5.5 (a) Three-dimensional and (b) x-y planar projection of Trajectory-CB1, color-
coded by qe (K). WRF prediction times (hh:mm format) for selected points along the 
trajectory described in the text are also shown in (a), with arrows in (b) pointing in the 
direction of parcel movement in WRF model time. Purple shading denotes the sum of latent 
and sensible ocean surface heat fluxes (W m-2) at 15:00. (c),(d) As in (a),(b) but for 
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Fig. 5.6 (a) WRF-predicted t = 15:40 and z = 0.5 km qe (shaded, K), horizontal storm-
relative flow vectors (m s-1) and vertical motion (w, black contoured for 1 and 2 m s-1, 
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radial winds (green contoured for 2, 5 and 10 m s-1; magenta contoured for -10,-5 and -2 m 
s-1). (c) and (d) As in (a) and (b) but for t = 16:00 and z = 3.25 km, with the current z = 
3.27 km Trajectory-CB1 position. In (c) and (d), w is thin-black (thick-black) contoured 
for 2 (5) m s-1  and purple-dotted contoured for -3/-1 m s-1; relative humidity (%) is shaded 
in (d). (e) and (f) As in (a) and (b) but for t = 16:10 and z = 12.75 km, with the current z = 
12.83 km Trajectory-CB1 position. For (e) and (f), w (m s-1) is contoured (thin solid black, 
2/5; thick solid black, 10/20/30; dotted purple, -4/-2) and (f) shows the z = 15 km p' field 
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Fig. 5.8 (a) Buoyant acceleration (m-1 s-1 h-1; magenta line), with its thermal (m-1 s-1 h-1; 
orange line) and hydrometeor loading (m-1 s-1 h-1;  green line) components, vertical 
perturbation pressure gradient acceleration (m-1 s-1 h-1;  blue line), and w (´ 10 m s-1; black 
line, all plotted as a function of height along a portion of Trajectory-CB1. (b) As in (a), but 
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Fig. 5.9 (a) As in Fig. 5.7 but for WRF prediction time 16:05, with perturbation virtual 
potential temperature (qv´, shaded, K). (b) As in (a) but with perturbation total hydrometeor 
mixing ratio (qTOT´, shaded, g kg-1). (c) As in (a) but with perturbation pressure (p´, shaded, 
hPa). (d) As in (a), but for radial wind (VR, shaded, m s-1). All perturbation variables shown 
here are defined with respect to the hydrostatic base state (section 5.2.4)………………153 
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perturbation virtual potential temperature 𝜃T,NQUH  (K), (c) perturbation liquid hydrometeor 
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that parcel experiences downward motion. Mean values are computed for each sub-sample 
of updraft backward trajectories binned by wMAX, as shown by arrows in (a), with the 
number of trajectories for each sub-sample given inside parentheses. Bracketed lines 
enclose vertical layers where the wMAX-12 and wMAX-CB sample mean differences are 
statistically significant at the 95% level. Perturbation variables shown in (a)-(d) are 
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Fig. 5.11 (a) WRF-predicted total (latent + sensible) ocean surface heat flux (W m-2) and 
10-m horizontal flow vectors (m s-1) averaged over the 1-h period ending at 15:00. (b) As 
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ascend above z = 0.5 km, and white lines showing x-y planar projections of these 
trajectories over the previous 1-h period. Only wMAX-20 and wMAX-CB trajectories ascending 
above z = 0.5 km over the +/- 5 min period surrounding 15:00 are plotted here. (c),(d) As 
in (a),(b) but for (c) model fields averaged over the 1-h period ending at 17:00 and (d) 
wMAX-20 and wMAX-CB updraft backward trajectories ascending above z = 0.5 km at 17:00 
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Fig. 5.12 (a) Mean qe (K) for sub-samples of backward trajectories binned by wMAX, plotted 
as a function of time prior to their ascent above z = 0.5 km. (b) As in (a) but for mean total 
(latent + sensible) ocean surface heat flux (W m-2; solid) and parcel height (m; dotted). 
Solid- or dot-bracketed lines denote time intervals where the difference between the wMAX-
12 and wMAX-CB sample mean total surface heat flux (parcel height) are statistically 
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Fig. 5.13 (a) As in Fig. 5.10, but for the subsample mean qe (K). (b) As in (a), but for 
subsample mean radial wind interpolated to the parcel position (m s-1). (c) As in (a), but 
for the subsample mean smallest distance in any Cardinal direction to the updraft element 
boundary (dEDGE, km). (d) As in (a), but for the subsample mean updraft element diameter 
(DAVG, km). (e) As in (a), but for subsample mean environmental relative humidity (RHENV, 
%). (f) As in (a), but for subsample mean environmental qe (𝜃" ,ENV, K). See section 5.2.5 
for the definitions of RHENV and 𝜃" ,ENV…………………………………………………164 
 
Fig. 5.14 (a) Histogram showing the number of updraft trajectories from the wMAX-CB sub-
sample (shaded), binned by distance to the updraft edge (km), as shown on the x-axis, and 
by height (km), as shown on the y-axis. Black contours show the number of updraft 
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Fig. 5.15 (a) Vertical profiles of trajectory subsample mean BA (solid lines, m s-1 h-1) and 
PGA (dotted lines, m s-1 h-1), color coded by subsample wMAX range as in Fig. 5.10. (b) As 
in (a), but for subsample mean parcel vertical acceleration Dw/Dt (solid lines, m s-1 h-1) and 
sum of the subsample mean BA and PGA (dotted lines, m s-1 h-1). (c) As in (a), but for 
subsample mean thermal buoyancy 𝑔𝜃TH /𝜃T (solid lines, m s-1 h-1). (d) As in (b) but for 
subsample mean hydrometeor loading 𝑔qHYD´ (solid lines, m s-1 h-1). Dashed black line 
denotes the approximate melting level. Bracketed solid (dotted) lines in (a),(c),(d) [(a)] 
show height intervals over which differences in the wMAX-12 and wMAX -CB mean BA, 
𝑔𝜃TH /𝜃T, and 𝑔qHYD,´ respectively, (PGA) are statistically significant at the 95% level…169 
       
Fig. 5.16 (a) Pearson correlation coefficient between the BA and PGA (𝜌E>,=X>) plotted 
for each wMAX-binned subsample as a function of height, with lines colored by subsample 
wMAX range as in Figs. 5.10 and 5.15. (b) Scatterplot of BA versus PGA at z = 10 km for 
wMAX-12 (light blue dots) and wMAX-CB (magenta triangles). (c) As in (a) but for the 
correlation coefficient between thermal buoyancy (THM) and hydrometeor loading (HYD) 
(𝜌YZ[,Z\]). (d) As in (b) but for the z = 8 km scatterplot of THM and HYD. Trajectories 
to the right of the dashed line in (b) have BA + PGA > 0 and trajectories to the right of the 
dashed line in (d) have THM + HYD > 0……………………………………………….170 
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List of Commonly Used Symbols  
 
 
CB-E1             CB element #1 (chapter 5) 
DAVG             mean updraft diameter 
dEDGE  minimum parcel distance to updraft edge in any Cardinal direction 
E1                    updraft element #1 (chapter 5) 
f            Coriolis Parameter 
g  Gravitational Constant  
ω                     total angular speed 
ω´                    perturbation angular speed 
Ω                     advective component of angular speed 
p                      pressure 
qV  water vapor mixing ratio  
qLIQ                  liquid hydrometeor mixing ratio 
qFRZ                           frozen hydrometeor mixing ratio 
qHYD                          total hydrometeor mixing ratio  ( = qLIQ + qFRZ ) 
qTOT                  total water mixing ratio ( = qHYD + qV ) 
RH                   Relative Humidity 
RHENV              environmental Relative Humidity 
rm                     optimal steering radius for forecast storm 
ro                     optimal steering radius for observed storm 
T                      Temperature 
𝜃                      potential temperature 
𝜃"             equivalent potential temperature 
𝜃",A^G             environmental equivalent potential temperature 
𝜃T             virtual potential temperature          
ur              total radial speed 
ur´             perturbation radial speed 
Ur                    advective component of radial speed 
Vopt,m                      optimal steering flow vector for forecast storm  
Vopt,o                       optimal steering flow vector for observed storm  
VR   radial wind speed 
VT   tangential wind speed 
w              vertical velocity 
wMAX                maximum w along a trajectory 
wMAX-8            subsample of MBL-Origin trajectories with wMAX < 8 m s-1 
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Chapter 1. Introduction 
 
 

1.1 Background and motivation 

 Tropical cyclones (TCs)1 are one of the most destructive natural hazards on Earth,  

and protection of life and property is critically dependent on accurate forecasts of their 

track and intensity. When TCs threaten coastlines with damaging winds, storm surge, 

and/or flooding rains, emergency managers need several days’ lead time prior to storm 

arrival to make decisions on issuing evacuation orders. The National Hurricane Center 

(NHC) in Miami FL, which is responsible for public TC forecasts in the Atlantic and 

Eastern Pacific basins, relies heavily on numerical weather prediction (NWP) model 

guidance. The suite of available NWP model output includes lower resolution global 

models such as the U.S. National Centers for Environmental Prediction (NCEP) Global 

Forecast System (GFS), as well as convection-resolving regional models optimized for TCs 

- such as the Hurricane Weather Research and Forecast model (HWRF). Regional models 

use boundary conditions provided from the global models. 

On average, NHC forecast accuracy has improved substantially over recent 

decades, particularly for TC tracks (Rappaport et al. 2009). More accurate NWP model 

output is arguably the greatest contributing factor to this success. Unfortunately, NWP 

models still struggle in predicting two TC phenomena that are less well understood: 

climatologically unusual motion and rapid intensification (RI). RI in Atlantic TCs is 

																																																								
1	The National Hurricane Center defines a TC as a “rotating, organized system of clouds 
and thunderstorms that originates over tropical or subtropical waters and has a closed 
low-level circulation” (https://www.nhc.noaa.gov/climo/). Mature TCs are also referred 
to as hurricanes in the Atlantic and eastern Pacific basins, typhoons in the northwestern 
Pacific basin, and cyclones in the Indian basin.      
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defined as a maximum surface wind (VMAX) intensification rate exceeding 15 m s-1 (24 h-1) 

(Kaplan and DeMaria 2003). The focus of the work described herein is to investigate the 

scientific processes controlling TC unusual motion and RI, using two selected case studies. 

If our ultimate objective is reducing NWP model forecast errors, improved scientific 

understanding of these phenomena is an important first step towards this end, for the 

following reasons. First, it will help us better assess the predictability of unusual motion 

and RI. In other words, to what extent do the occasionally large errors in model forecasts 

result from unusually rapid error growth during model integration? Second, a better 

understanding of how well our current suite of NWP models can resolve the underlying 

physical processes should help us identify model components in need of further 

improvement - such as, for example, data assimilation, model physics, and/or resolution. 

The following two subsections introduce the forecast challenges posed by TC unusual 

motion and RI and raise some preliminary scientific questions. The final section of this 

chapter outlines major objectives of this research project. 

1.1.1 Climatologically unusual TC motion  

Mean NHC 24-48 h forecast TC position errors have dropped by 70% since 1990 

(Cangialosi and Franklin 2016) – one of the greatest achievements in all of NWP. Increased 

grid resolution, improved model physics parameterizations, and more accurate 

initialization fields (i.e., analyses) have all improved operational forecast models’ 

representation of large-scale wind and temperature fields (Rappaport et al. 2009; Galarneau 

and Davis 2013). Advanced data assimilation algorithms (Hamill et al. 2011) and the 

assimilation of new observations over traditionally data-sparse oceans, which include 

clear-sky satellite radiances and National Oceanic and Atmospheric Administration 
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(NOAA) Gulfstream-IV (G-IV) synoptic surveillance aircraft dropsondes (Aberson 2010), 

have both helped to improve the accuracy of large-scale flow fields in operational GFS 

analyses. Traditionally, TC motion has been understood as the advection of an isolated 

vorticity anomaly by a surrounding “mean wind” vertically averaged over a “steering 

layer” (Chan and Gray 1982); the mean wind includes any near-storm flow asymmetries 

generated by the vortex through the “beta effect” ( Holland 1983, 1984). Provided that the 

mean wind field surrounding a TC vortex is not substantially sheared, either in the 

horizontal or the vertical dimensions, accurate model prediction of TC motion is generally 

less sensitive to the model resolution of inner core structures compared to that of larger-

scale flows (Galarneau and Davis 2013). This condition often holds for the climatologically 

typical anticyclonic TC motion that follows geostrophic steering currents surrounding the 

Western Atlantic Ridge; for these typical tracks, westward to northwestward motion in the 

tropics/subtropics is followed by midlatitude recurvature to the northeast.  

Notably however, Landsea and Cangialosi (2018) have recently reported a 

“leveling off” in NHC TC track forecast improvement trends over the five-year period 

ending in 2016, especially for the longer 120-h lead times – see their Fig. 1, reproduced 

below as Figure 1.1. Their study focused on trends in mean seasonal TC track forecast 

errors. On one hand, these authors found no NHC track forecast improvement over the 

same five-year period relative to a simple climatology and persistence model, which 

implies that the mean track error statistics over this period are not completely skewed by a 

few outlier cases with unusually low predictability. They discussed one possible 

explanation for this result: that longer-lead TC track forecasts may be approaching the 
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Lorenz (1969) predictability limit that results from errors cascading upwards from smaller 

scales to the synoptic scale.  

 

Figure 1.1 Track forecast errors (in n mi) from the NHC for the Atlantic basin for the 24- 
(red), 72- (yellow), and 120-h (blue) predictions. The best fit linear trend is indicated for 
each time frame in the colored dotted lines. The 2012–16 best fit linear trend is appended 
for each time series in black. Samples sizes for the 24-, 72-, and 120-h forecasts are 
indicated (from top to bottom) along the x axis. Adapted from Landsea and Cangialosi 
(2018) Fig. 1. 

Landsea and Cangialosi (2018) also pointed out how the 2012-2016 period included 

a few notable Atlantic TCs with large NHC forecast track errors, such as Tropical Storm 

Debby (2012), Hurricane Sandy (2012), and Hurricane Joaquin (2015). Common to all 

three cases was a bifurcation in NWP model forecast tracks at lead times longer than 72 h, 

with two distinct “camps” of ensemble member and deterministic model solutions. The 

latter two storms, both of which caused extensive destruction and loss of life, also followed 

climatologically unusual tracks. For Sandy (2012), the deterministic European Center for 

Medium-range Weather Forecasting (ECMWF) model correctly predicted the storm to 
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“hook leftward” at an unusually high latitude and strike the northeast U.S. many cycles 

earlier than the GFS; the latter continued to forecast a northeastward recurvature into the 

open Atlantic during this period. Steering currents caused by an anomalous upper-level 

blocking pattern, featuring a large high over the northern Atlantic south of Greenland and 

a deep trough over the southeastern U.S., helped to draw Sandy northwestward onto the 

U.S. coast (Blake et al. 2013). Torn et al. (2015) further showed how the bifurcated early 

cycle GFS ensemble track spread – with the two member groups roughly in line with the 

deterministic ECMWF and GFS solutions, respectively - resulted in part from subtle 

differences in the model representation of rainband latent heating that in turn impacted the 

ridge intensity north of Sandy. Unusual TC motion is not confined to the Atlantic basin. 

Zhang et al. (2018) analyzed 1320 western Pacific typhoons from a 65-year period ending 

in 2013 and found that 564 storms followed unusual tracks at some point in their lifetimes, 

which they categorized into the following sub-types: sharp westward turning, sharp 

eastward turning, sharp northward turning, sharp southward turning, looping, rotating, or 

zigzagging.  

Hurricane Joaquin (2015) followed a particularly unusual looping track (Fig. 1.2; 

adapted from Torn et al. 2018 Fig. 4a). Beginning as an extratropical upper-level low south 

of Bermuda (Berg 2016), Joaquin underwent “tropical transition” (Davis and Bosart 2004; 

Bentley et al. 2017), also climatologically rare for Atlantic major hurricanes. During 

tropical transition, Joaquin’s precursor disturbance drifted southwestward toward the 

Bahamas while deep convection developed nearby (Berg 2016). Around 0600 UTC 29 Sep, 

Joaquin began a 60-h RI episode, with its VMAX increasing from 18 to 61 m s-1. Joaquin 

continued moving southwestward during RI; satellite-derived wind imagery revealed a 
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complex near-storm steering environment (to be described more fully in section 2.2) with 

substantial vertical wind shear (VWS), particularly northwest of the storm. Here, an 

elongated northeast-southwest oriented mid-to-upper level ridge overlay a relative 

weakness in low-to-mid level ridging. Joaquin’s motion slowed for the next 24 hours as it 

began a slow clockwise turn through the Bahamas under a weak steering flow regime that 

developed as a digging mid-to-upper level trough over the eastern U.S. eroded the 

aforementioned mid-to-upper level ridge. After 1800 UTC 02 Oct Joaquin began 

accelerating northeastward, completing its loop; although the storm initially re-intensified, 

it eventually weakened as it moved into a less favorable environment near Bermuda (Berg 

2016). 

 

Figure 1.2 Operational ECMWF ensemble forecasts of Hurricane Joaquin (2015) 
initialized at 0000 UTC 30 Sep (gray lines). Dots indicate the location of each ensemble 
member at 24-h intervals, while the colored ellipses show a bivariate normal fit to the 
positions at each 24 h. Purple, cyan, green, red, and magenta denote 24-h, 48-h, 72-h, 96-
h, and 120-h locations, respectively. The direction of the 72-h major axis is denoted by the 

southwesterly movement toward the Bahamas. The latter
set of members continued to move southwest between 24
and 48h, then turning around andmoving to the northeast
thereafter, similar to the best track. By contrast, the set of
members that had the more westerly motion during the
first 24h acquired amore northerlymotion between 48 and
72h and amore northwesterlymotion thereafter due to the
aforementioned midlatitude trough that dug into the
southeastern United States (Figs. 3b,c). In turn, this group
predicted that Joaquin would make landfall in either
North or South Carolina. Similar to Debby, the official
NHC forecast was closer to the western motion subgroup,
which resulted in a 96-h position error of 522km.

c. Typhoon Lionrock (2016)

Typhoon Lionrock transitioned from a subtropical to
tropical cyclone near 288N, 1548E at 1800UTC 17August
2016.1 Over the next 6 days, Lionrock moved south-
westward in response to a building subtropical high to the
northwest and anticyclonic wave breaking to its east and
intensified into a 95-kt typhoon by 0000 UTC 26 August,
when the TC reached its farthest southwestern point.
Beyond that time, the TC began to move to the northeast
in response to a deep cyclonic circulation over northeast
China and an anticyclone to its east, which combined to
create a large-scale deformation steering flow pattern
(Fig. 5). During this time, the typhoon reached its

maximum intensity of 120 kt at 0000 UTC 28August. By
0000 UTC 30 August, the typhoon turned sharply to the
northwest in response to a deepening trough to its
southwest as it underwent ET, leading to a rare landfall
along Japan’s eastern coast, which is similar to the mo-
tion of Hurricane Sandy along the East Coast of the
United States in 2012 (Blake et al. 2013). The typhoon
was associated with extensive damage both in Japan
and North Korea, resulting in 550 deaths and $325
million (U.S. dollars) in damage (Podlaha et al. 2016).
Although Lionrock’s position forecast near the time of

ET exhibited large position variability for many initiali-
zation times, the focus of this study will be in the ensemble
forecast initialized at 0000UTC 27August (Fig. 6a), which
is one of the last initialization times that contains signifi-
cant across-track variability at the time of ET. During the
first 48h, the ensemble standard deviation in across-track
position is less than 100km; however, by 72h, the ensemble
positions become highly anisotropic, with some members
showing Lionrock in the Sea of Japan, moving quickly
north of due west around a midlatitude cyclone, while
another set of members has Lionrock continuing to move
to the northeast at a slower rate. The position variability
for this case resembles the ensemble forecasts for Hurri-
cane Sandy (e.g., Torn et al. 2015).

4. Results

a. Tropical Storm Debby (2012)

Given the large position variability in this forecast, it
is of interest to understand what processes contributed

FIG. 4. As in Fig. 2, but for Hurricane Joaquin ini-
tialized at (a) 0000UTC 30 Sep, (b) 1200UTC 30 Sep,
and (c) 0000 UTC 1 Oct 2015. Purple denotes 24-h
locations, cyan denotes 48-h locations, green denotes
72-h locations, red denotes the 96-h location, and
magenta denotes the 120-h position. The direction of
the 72-h major axis is denoted by the green vector.

1 Genesis, position, and intensity based on Joint Typhoon
Warning Center (JTWC) best track information.
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green vector. The thick black line connects NHC best-track storm positions from the 0000 
UTC 30 Sep – 0000 UTC 05 Oct period, and black arrows point in the direction of storm 
motion. Adapted from Torn et al. (2018) Fig. 4a. 

Joaquin’s track was poorly forecast by most operational models, particularly early 

in its southwest movement period (Berg 2016). Figure 1.2 shows the bifurcated ECMWF 

ensemble track guidance initialized at 0000 UTC 30 Sep. Members are concentrated into 

two camps: one similar to the correct looping track solution and the other forecasting a 

northwestward turn leading to a Carolina landfall. The deterministic ECMWF caught on to 

the former track solution beginning with the 0000 UTC 29 Sep forecast cycle. However, 

the GFS and other typically reliable global deterministic models held on to the northwest-

turn idea through the 1800 UTC 30 Sep forecast initialization. By this time, the GFS and 

HWRF forecasts of a U.S. major hurricane landfall at less than 5 days’ lead time caused 

considerable alarm among potentially affected residents. The widely diverging track 

solutions between the deterministic ECMWF and other global models on 29-30 Sep also 

presented NHC forecasters with a significant challenge.  

The unusually large spread in Joaquin’s track forecast among operational 

deterministic models and ensemble members implies inherent low predictability, whereby 

large storm motion differences can develop out of small atmospheric state variations that 

are (i) present in the model initial conditions, and/or (ii) develop early in the model 

integration. Nystrom et al. (2018, hereafter N18) and Torn et al. (2018) used ensemble 

forecasts from the Weather Research and Forecasting (WRF) model and operational 

ECMWF respectively to show how members that eventually recurved Joaquin away from 

the U.S. tracked further south during the initial 24 hours. While the ECMWF ensemble 

member position uncertainty was concentrated in the meridional direction over the first 72 
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hours, it became zonally aligned later on (see the time evolution of the colored ellipse 

orientation in Fig. 1.2). Torn et al. (2018) showed how Joaquin’s initialized vortex at 0000 

UTC 30 Sep was located near a large-scale deformation flow axis of contraction, such that 

small north-south displacements could expose the storm to different flow regimes. N18 

also discussed the significance of the early-period north-south ensemble member position 

spread in the context of the large-scale flow evolution. As the eastern U.S. trough 

developed into a closed low over the Florida Panhandle late in the forecast period, southern 

(northern) members experienced stronger westerly (easterly) cyclonic flows surrounding 

the Florida low; this was consistent with their northeastward out-to-sea (northwestward 

U.S. landfalling) motion.  

It is worthwhile to further investigate why the operational GFS model struggled 

with Joaquin’s track prediction during early forecast cycles. As a starting point, we ask: 

what atmospheric features were most important in steering Joaquin southwestward during 

its early development period? Berg (2016) noted that the early-cycle GFS forecasts 

terminated Joaquin’s southwestward motion more quickly compared to the more accurate 

ECMWF track forecast, consistent with the N18 and Torn et al. (2018) ensemble sensitivity 

analyses. Notably, the northeast-southwest orientation of the mid-to-upper level high 

positioned northwest of Joaquin aligned well with the storm’s southwestward motion 

vector (to be shown in section 2.2); this suggests that northeasterly geostrophic flows 

surrounding the high may have been important to steering the storm. If so, then how 

sensitive was the storm’s southwest motion to the vortex having sufficient depth to interact 

with these flows? Previous studies have shown that TC motion in vertically sheared steering 

environments can be sensitive to the vortex depth, with upper-tropospheric steering winds 
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having a greater influence on stronger storms, which are generally characterized by taller 

and more vigorous inner-core convection (Dong and Neumann 1986; Galarneau and Davis 

2013). Finally, did the GFS track forecast errors result from inadequate representation of 

the vortex, surrounding environment, or some combination of both? 

 1.1.2 Convective bursts and RI 

Hurricanes Charley (2004), Harvey (2017) and Michael (2018) are recent examples 

of TCs that underwent RI within 24 hours of making landfall on the U.S. coastline (Franklin 

et al. 2006; Blake and Zelinsky 2018; Beven et al. 2019). NWP forecast models struggled 

to capture the Charley (2004) and Michael (2018) intensification rates, and NHC 

forecasters were placed in the unfortunate position of having to upwardly revise intensity 

forecasts for these two storms throughout the final day prior to landfall. Coastal residents 

who had chosen not to evacuate based on earlier lower-intensity forecasts were left 

unprepared for these storms’ ferocity. One of the more enigmatic aspects of TC RI is the 

fact that the environmental conditions favorable to it, such as high sea surface temperature 

(SST), low VWS, and high ambient low-to-middle tropospheric relative humidity (Kaplan 

and DeMaria 2003) are not otherwise distinguished from those favoring normal TC 

intensification rates (Hendricks et al. 2010). RI in TCs is likely controlled by complex 

multi-scale interactions between the environment and inner-core processes that are still not 

well understood (Rogers et al. 2010; McFarquhar et al. 2012; Rogers et al. 2013; Qin et al. 

2018b).  

Observations have shown that RI can be preceded or accompanied by outbreaks of 

inner-core deep convection, known as “hot towers” or “convective bursts” (Gentry et al. 

1970; Rodgers et al. 1998; Heymsfield et al. 2001; Molinari et al. 2006; Houze 2009; 
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Guimond et al. 2010). Over recent years, considerable interest has developed around 

gaining a better understanding of the possible role that CBs play in facilitating RI. 

According to one hypothesis, perhaps first articulated in Heymsfield et al. (2001), 

compensating subsidence flanking the inner edges of CB updrafts enhances warming in the 

middle or upper levels of a TC eye; see their schematic, reproduced here as Fig. 1.3, for a 

conceptual overview of this process. Eye warming – in other words, a positive local 

potential temperature tendency – can proceed via this mechanism provided that (i) 

adiabatic warming locally exceeds evaporative/sublimative cooling in the subsidence 

currents2 and (ii) the swirling wind circulation is sufficiently robust to “trap” the heating 

inside the eye (Hack and Schubert 1986). In understanding (ii), note that higher inertial 

stability, defined in cylindrical coordinates as 

  𝐹M = 𝑓 + MGc
d

𝑓 + L
d
)(dGc)
)d

,                         (1.1) 

where 𝑓 is the Coriolis Parameter, 𝑉Y is the tangential wind component, and 𝑟 is the local 

radius (Chen and Zhang 2013) indicates greater vortex resistance to radial flows.3 Warming 

																																																								
2	Here, we consider potential temperature (𝜃) in an axisymmetric cylindrical (r, 𝜆, z) 
coordinate system, where 𝑢d = 	𝐷𝑟/𝐷𝑡, in terms of the forcing terms on the local 𝜃 
tendency: 𝜕𝜃/𝜕𝑡 = 𝐷𝜃/𝐷𝑡 −𝑢d

)*
)d
− 𝑤 )*

)/
. They are, from left to right, the material 

derivative absorbing all Lagrangian 𝜃 sources and sinks, horizontal advection, and 
vertical advection. Provided static stability )*

)/
 is positive, eye subsidence (i.e. negative w) 

is a positive forcing on 𝜕𝜃/𝜕𝑡 via the vertical advection term −𝑤 )*
)/

. 
3	Eliassen (1952) first derived an equation describing a transverse circulation in the r-z 
plane of a symmetric vortex in hydrostatic and gradient wind balance that slowly evolves 
in response to heat and momentum sources. This equation has been widely used in 
theoretical TC studies to describe the “in-up-out” secondary circulation consisting of a 
low-level inflow, eyewall updraft core, and upper tropospheric outflow (Charney and 
Eliassen 1964; Shapiro and Willoughby 1982; Hack and Schubert 1986) – an excellent 
review of this topic can be found in Montgomery and Smith (2014) sections 2.1- 2.5. 
Inertial stability 𝐹M, which is proportional to the Coriolis parameter, VT/r, and the vertical 
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in the eye vertical column hydrostatically induces a lower surface pressure. It is well known 

that for intensifying TCs, minimum central sea level pressure (PMIN) falls accompany 

increasing VMAX, and several alternative empirical and analytical “pressure-wind 

relationships” have been developed relating PMIN to VMAX (Kieu et al. 2010). For a vortex 

under gradient wind balance, VT intensifies in response to falling central pressures via 

geostrophic adjustment, provided that pressure field changes occur on a horizontal scale 

larger than the vortex Rossby radius of deformation (Fang and Zhang 2010). However, 

gradient wind balance is not satisfied in a TC boundary layer (Montgomery and Smith 

2014). Whether PMIN intensification ultimately drives VMAX intensification or vice versa 

remains a difficult, still unresolved question in the TC research community, and we shall 

revisit this question briefly again in Chapter 6. Besides the Heymsfield et al. (2001) 

subsidence warming mechanism, CBs have also been shown to facilitate TC intensification 

through their aggregation and vertical stretching of low-level cyclonic vorticity 

(Montgomery and Smith 2014; Nguyen and Molinari 2015) and by their moistening of the 

midlevel inner core (Nolan 2007; Montgomery et al. 2006). 

																																																								
component of relative vorticity, appears in Eliassen’s (1952) equation as a stabilizing 
term acting to resist the transverse circulation in the radial direction. 
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Figure 1.3 Conceptual summary of the proposed mechanism through which CB updraft 
compensating subsidence contributes to TC eye warming. Adapted from Heymsfield et al. 
(2001) Fig. 12. 
 

Figure 1.4 shows a vertical cross-section of an intense CB in the rapidly 

intensifying Hurricane Dennis (2005) as observed by airborne Doppler radar. We find peak 

vertical velocity exceeding 15 m s-1 in the upper troposphere and a ~ 5 m s-1 subsidence 

current on the inward edge of the cloudy region near the developing eye. Chen and Zhang 

(2013) described how RI onset in their WRF-simulated Hurricane Wilma (2005) was 

accompanied by an outbreak of eyewall CBs with roughly 30-min lifetimes. Their Fig. 5, 



	

	 	 	13	

reproduced below as Fig. 1.5, shows subsidence currents (dashed blue lines) that initially 

surround CB updraft cores becoming trapped inside of the radius of maximum wind (black 

circles) coincident with the development of a cloud-free eye. Using a heat budget, Miller 

et al. (2015) found that adiabatic subsidence-induced vertical 𝜃 advection (i.e. −𝑤 )*
)/

 ) 

accounted for the largest portion of Wilma’s upper-level eye warming. This was shown in 

their Fig. 10, reproduced here as Fig. 1.6. 

 

 

Figure 1.4 Zoomed-in view of an eyewall CB in rapidly intensifying Hurricane Dennis 
(2005). Vertical velocity (shaded; m s-1) is retrieved from airborne Doppler radar. Adapted 
from Guimond et al. (2010) Fig. 9b. 
 

 

eye
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Figure 1.5 Horizontal maps of the predicted outgoing longwave radiation superimposed 
with storm-relative flow vectors [see the scale below (f)] and vertical motion (upward/red 
contours at interval of 5 m s−1, downward/blue contours at −0.5, −1, −2, −4, −6, −8, and 
−10 m s−1) at z = 15 km over the subdomains of 100 km × 100 km, centered at PMIN, that 
are taken at an interval of 10 min, except for (f) and (g) between which a 30-min interval 
is used, during the period from (a) 14:00 to (g) 15:45 (i.e., at the onset of RI). The mean 
radius of maximum wind at z = 1 km is also plotted. Letters A–D are used to trace the 
evolution of four different convective bursts. Line l–lʹ in (b) denotes the location of a 
vertical cross section shown in Chen and Zhang (2013) Fig. 6. Adapted from Chen and 
Zhang (2013) Fig. 5. 
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Figure 1.6 Time series of forcing terms on the potential temperature local tendency [𝜕𝜃/𝜕𝑡 
= 𝐷𝜃/𝐷𝑡 −𝑢 )*

)+
− 𝑣 )*

)-
− 𝑤 )*

)/
 ], in the Chen et al. (2011) Hurricane Wilma (2005) WRF 

simulation, averaged over a 10 km ´ 10 km; z = 12–16 km control volume centered at the 
PMIN centroid. HADV and VADV respectively denote horizontal and vertical advections. 
Curves show data that have been smoothed into a 1-h running mean, with equal weighting 
applied to the 30-min periods prior to and after the indicated time. Adapted from Miller et 
al. (2015) Fig. 10. 

 

Given the now widely acknowledged important, potentially even fundamental, role 

of buoyant deep convection in the RI of TCs, we ask: how can a mature TC eyewall 

environment support CB development? While wind-induced heat and moisture fluxes 

above warm SSTs provide an ample source of high-equivalent potential temperature (𝜃") 

air to a TC boundary layer (Emanuel 1986; Zhang et al. 2002), (i) excessive hydrometeor 

loading from the moist tropical environment (Zhang et al. 2000), (ii) warming from latent 

heating (Emanuel 1986), (iii) increased static stability associated with warm core 
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development (Vigh and Schubert 2009), and (iv) the entrainment of surrounding dry air 

(Cram et al. 2007) could all potentially render the eyewall a less favorable environment for 

maintaining buoyant updrafts. Also, given the rapidly rotating TC eyewall flows, to what 

extent can CB updraft roots be traced to portions of the boundary layer where ocean 

surface heat fluxes are locally higher? For instance, Chen and Zhang (2013) showed that 

the number of CBs generated in their Hurricane Wilma (2005) simulation was strongly 

sensitive to SST. How do CB updrafts interact with the locally sheared (both horizontally 

and vertically) swirling winds? How do local pressure perturbations from hydrostatic 

balance affect CB updraft accelerations? Most previous modeling studies (Chen and 

Zhang 2013; Chen and Gopalakrishnan 2015; Nguyen and Molinari 2015) and observations 

of CBs in TCs (Heymsfield et al. 2001; Molinari et al. 2006; Houze 2009; Guimond et al. 

2010) have used a Eulerian reference frame. A Lagrangian analysis of CB structure and 

thermodynamics could potentially offer some new insights in addressing the above 

questions. Ultimately, a better understanding of the conditions favorable to CB 

development in TCs could be beneficial both to forecasters evaluating the potential for 

storms to undergo RI and to NWP model developers seeking to improve their models’ 

ability to resolve and predict CBs. 

 

1.2 Objectives 

 Major objectives of the research described herein are listed below in numbered 

format, with bulleted points outlining the methods used in addressing them.   
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i) Investigate the atmospheric features responsible for the unusual looping track of   

Hurricane Joaquin (2015). Was Joaquin’s motion primarily controlled by larger-scale 

features, or was it also sensitive to the vortex depth?  

• Use the WRF model to generate a high-resolution Control (CTL) simulation 

of Hurricane Joaquin (2015) that reproduces the looping track.  

• To investigate hypotheses regarding important steering features, perturb the 

CTL analysis by assimilating synthetic observations into the WRF Data 

Assimilation system (WRFDA) and run sensitivity WRF simulations from 

the perturbed analyses.  

ii) Examine the source of the large Hurricane Joaquin (2015) track forecast errors  

         in several operational GFS forecasts. More specifically, what features important 

    to steering Joaquin were not well resolved in these GFS forecasts? 

• Use a steering flow error diagnostic equation developed by Galarneau and 

Davis (2013) to quantify Joaquin’s motion error in the GFS forecasts in 

terms of vector differences from the NHC best-track motion. This equation 

enables us to isolate model error in representing the large-scale steering 

environment from model error in representing the vortex size, depth, and 

interaction with its steering environment.  

• To identify specific features poorly resolved by the GFS, compare its 

gridded analysis and forecast fields to the NCEP Final Analysis, the latter 

being used as a proxy for the “true” atmospheric state. 

       iii) Develop a new algorithm for computing three-dimensional trajectories from  

   WRF model output. Implement advection correction (AC) into the time 
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     interpolation algorithm used for mapping WRF output data at relatively coarse  

     temporal resolution to the high resolution computational timestep needed to satisfy 

     computational stability constraints in the trajectory calculations. The purpose of  

     AC – an experimental technique not used in any publically available trajectory 

     models – is to reduce wind estimation errors at the parcel position by interpolating  

     data in a reference frame that translates with the swirling TC wind circulation.    

• Adapt a Cartesian coordinates-based AC algorithm originally developed by Gal-

Chen (1982) for radar data processing and later extended by Shapiro et al. (2015) 

for trajectory calculations to cylindrical coordinates, which are more appropriate 

for analyzing TC flows. 

• Evaluate the impact of the new cylindrical coordinates-based AC algorithm on 

trajectories run from the Hurricane Joaquin (2015) CTL simulation output at 5-

minute temporal resolution by comparing them to “truth” trajectories generated 

from 1-min CTL output using traditional linear time interpolation.  

iv) Use the algorithm developed for objective (iii) to run trajectories through CBs 

     generated in the Chen et al. (2011) Hurricane Wilma (2005) WRF prediction and 

     compare their three-dimensional structures and thermodynamic properties to the 

     background eyewall ascent.  

• Examine the three-dimensional structure, 𝜃" conservation, and parcel vertical 

accelerations for a selected CB trajectory to try to better understand how it 

becomes differentiated from Wilma’s background eyewall ascent. 
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• Use a statistical analysis of a large trajectory sample to establish systematic 

differences between Wilma’s CBs and the background eyewall ascent in terms of 

parcel thermodynamics, environmental air entrainment, and vertical accelerations. 

    

     The remainder of this dissertation is organized as follows. Chapter 2 (published as 

Miller and Zhang 2019a) investigates the atmospheric features steering Hurricane 

Joaquin (2015) along its unusual looping track and identifies which steering features were 

not well resolved by the operational GFS. Chapter 3 describes the data assimilation 

methods used in generating WRF analyses for CTL and its sensitivity tests; this chapter 

expands on material published in Miller and Zhang (2019a) Appendix I. Chapter 4 

(published as Miller and Zhang 2019b) introduces the three-dimensional trajectory 

computation algorithm developed for this research project and validates it using tests on 

analytical and numerically-simulated flow fields. In Chapter 5 (submitted for publication 

as Miller and Zhang 2019c), this trajectory algorithm is used to trace the roots of CBs in 

the Chen et al. (2011) Hurricane Wilma (2005) WRF prediction and study their 

thermodynamic properties. Chapter 6 provides a dissertation summary, concluding 

remarks, and ideas for future work. 
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Chapter 2. Understanding the Unusual Looping Track of Hurricane 
Joaquin (2015) and its Forecast Errors  

 
Material presented in this chapter has been published in Monthly Weather Review as 

Miller and Zhang (2019a) 
 
 

2.1 Introduction 

    Since 1990, NHC mean TC 24-72 h forecast position errors have been reduced by 

70% (Cangialosi and Franklin 2016), giving residents and emergency managers valuable 

additional time to prepare for hurricanes threatening the U.S. coast. TC intensity 

forecasting has shown less improvement, particularly for RI cases (Kaplan et al. 2010), 

characterized by PMIN deepening rates exceeding 42 hPa (24 h) -1 (Holliday and Thompson 

1979) or by VMAX intensification exceeding 15 m s-1 (24 h) -1 (Kaplan and DeMaria 2003). 

This discrepancy has often been explained by the fact that TCs are steered by their large-

scale flow environments (George and Gray 1976; Chan and Gray 1982; Wu and Emanuel 

1995), whereas TC intensification depends upon complex multiscale interactions between 

favorable environmental conditions, such as high SSTs, and inner-core processes (Chen et 

al. 2011; Qin and Zhang 2018b), some of which remain poorly understood. 

   Increased grid resolution, improved physics parameterizations, and more accurate 

initialization fields have improved the representation of environmental conditions and 

inner-core convective organization in operational forecast models. New observations over 

traditionally data-sparse oceans, which include satellite radiances and dropsondes released 

from NOAA G-IV synoptic surveillance aircraft (Aberson 2010), are now being routinely 

assimilated into operational models. Hybrid data assimilation, which blends climatological 

background forecast errors with “errors of the day” extracted from multivariate forecast 
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ensemble covariances, has been shown to improve TC track forecasts for the operational 

NCEP GFS model (Hamill et al. 2011) and for regional models (Wang 2011). 

   Despite these improvements, the GFS has struggled with the track prediction of a few 

recent high-profile TC cases with unusual movements. Brennan and Majumdar (2011) 

investigated why several GFS runs failed to predict the northward turn of Hurricane Ike 

(2008) in the western Gulf of Mexico and instead forecast a due-west track into the lower 

Rio Grande valley at 3-4 days’ lead time. They traced the track errors to the model initial 

conditions, which over-intensified the subtropical ridge north of the storm. Another notable 

case was Hurricane Sandy (2012), which the GFS forecast to recurve into the Atlantic for 

many cycles after the ECMWF model correctly predicted a northeast U.S. landfall. Unlike 

Brennan and Majumdar (2011) and other previous studies (Wu and Emanuel 1995; Wu et 

al. 2004), which found that distant synoptic-scale features primarily controlled TC steering, 

Bassill (2014) and Torn et al. (2015) both traced the GFS Sandy track forecast errors to the 

model representation of the near-storm environment, and specifically to the impact of latent 

heating from rainband convection on the intensity of a ridge north of the storm.  

   Hurricane Joaquin (2015) was a particularly unusual case, and its track was not well 

forecast by most operational models (Berg 2016, see his Fig. 9). Following genesis, the 

storm began a climatologically rare southwestward drift toward the Bahamas. The GFS 

was consistent in predicting the storm to quickly curve westward and then northward, 

through the 1800 UTC 30 September forecast cycle, with numerous runs showing a 

hurricane landfall on the mid-Atlantic coast on 04 October. Notably, the ECMWF model 

broke ranks from the other guidance beginning with the 0000 UTC 29 September cycle, 
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maintaining the southwestward motion longer before sharply recurving to the storm the 

northeast and missing the U.S. coast - the correct solution.  

   Nystrom et al. (2018, hereafter N18) simulated Joaquin using an ensemble of Weather 

Research and Forecasting (WRF) model forecasts initialized at 1200 UTC 29 Sep, and they 

found that the recurving members had tracked further south during the first 24 h, compared 

to the U.S. landfalling members. N18 showed how the south-tracking members were 

steered by stronger westerly winds later in the forecast period. This was consistent with 

their having moved further south relative to a mid-to-upper-level low pressure system over 

the southeast United States, into an environment where the cyclonic winds surrounding the 

low had a stronger westerly component.  Key findings from this study were that (i) 

Joaquin’s track forecast uncertainty was most sensitive to 700-hPa winds in the near-storm 

environment (the 600 – 900 km radial band); and (ii) inner-core features did not 

significantly affect the steering of Joaquin. To show the latter, they re-ran the forecast 

ensemble after applying the same initial conditions within 300 km to every member and 

found that 80% of the original ensemble track spread was retained. In their analysis of the 

operational ECMWF ensemble initialized at 0000 UTC 30 Sep, Torn et al. (2018) showed 

that Joaquin’s forecast position uncertainty, which was concentrated in the north-south 

direction over the first 72-h forecast, was most sensitive to ensemble member differences 

in the near-storm (within 500 km) steering winds that developed over the first 24 h. This 

was consistent with the initialized ensemble members being located near the axis of 

contraction for a large-scale deformation flow, such that relatively small displacements in 

their meridional positions could expose them to different steering-flow regimes.  
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TC motion has been traditionally understood in terms of the advection of an isolated 

vorticity anomaly by the surrounding mean wind. Research over the past few decades has 

grappled with the more challenging question of how best to define the environmental flow 

around a TC. Chan and Gray (1982) composited rawinsonde observations surrounding a 

large sample of western Pacific and Atlantic TCs stratified by latitude, forward speed, size, 

and intensity; they found that TC motion is best correlated to winds averaged over a 5°-7° 

radial band in the 700-500 hPa layer. This and earlier studies (e.g., George and Gray 1976; 

Gray 1977), though comprehensive, were limited by a relatively sparse global 

observational network. More recent case studies using airborne radar data (Marks et al. 

1992) and model simulations (Liu et al. 1999) reported TC motion to be consistent with 

flows averaged over a much smaller region, within a 100-km radius. Nevertheless, the size 

of the radial disk or band around a TC where the circulation interacts with the steering flow 

may depend on both vortex size and flow asymmetries in the near-storm environment 

(Holland 1983, 1984; Galarneau and Davis 2013, hereafter GD13). Other studies have 

emphasized the sensitivity of TC motion to the “steering layer” used for vertically 

averaging the environmental winds. Dong and Neumann (1986) compiled statistics from 

operational global analyses and showed that steering layer depth was directly proportional 

to TC intensity, which is consistent with stronger TCs tending to have deeper vortices. 

Through analysis of omega dropwindsondes released around Hurricane Josephine (1984) 

during a field campaign, Franklin (1990) showed that for a vertically sheared environment, 

a TC can be steered by a relatively narrow tropospheric layer and that these flows may not 

be well estimated by a deep-layered average. Together, this body of work suggests that 
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even if the large-scale environment is well defined, TC motion may be sensitive to the 

vortex intensity, structure and size, particularly for complex flow environments.     

   The objectives of this study are (i) to obtain a successful 114-h control simulation 

(CTL) of Hurricane Joaquin (2015) in terms of its track, intensity and inner-core structures, 

as validated against various observations; (ii) to use this simulation, along with sensitivity 

tests, to further explore the causes of Joaquin’s unusual southwest motion; and (iii) to better 

understand why the operational GFS forecast struggled in predicting this motion. These 

objectives will be accomplished by identifying atmospheric features that were resolved 

differently by two representative GFS forecasts, as compared to CTL and the NCEP Final 

Analysis (FNL). Using these differences as a guide, we perturb the CTL initial conditions 

by assimilating synthetic observations and run sensitivity forecasts from these analyses. 

Accomplishing the above objectives will help address the following questions. First, given 

that the environment surrounding Joaquin was characterized by moderate vertical wind 

shear (VWS), with northeasterly winds more prominent in the mid-to-upper troposphere 

(to be shown in the next section), to what extent was Joaquin’s southwest motion dependent 

(if at all) on the vortex having sufficient vertical depth? Second, what features in Joaquin’s 

surrounding environment influenced the steering flows? Third, did the GFS track forecast 

errors result from inadequate representation of the vortex, surrounding environment, or 

some combination of both?  

   The next section provides a case overview. Section 2.3 describes the WRF model 

settings, initial condition perturbation strategy, and steering flow diagnostics methods. 

Section 2.4 validates CTL against observations, followed by steering flow analysis given 

in section 2.5. Major findings and conclusions are summarized in the final section.  
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2.2 Case overview 

   Unlike most Atlantic major hurricanes, Joaquin underwent tropical transition (Davis 

and Bosart 2004; Bentley et al. 2017) from an extratropical precursor disturbance (Berg 

2016). Late on 26 Sep, a mid-to-upper level low that had been drifting westward across the 

subtropical Atlantic acquired a surface reflection about 650 km northeast of the central 

Bahamas. Although the surface center was initially displaced northwest of disorganized 

convection, it was designated as a tropical depression on 0000 UTC 28 Sep when 

convection developed nearby. Joaquin reached tropical storm intensity 24 h later, and it 

began a 60-h RI period 6 h thereafter, with its VMAX increasing from 18 to 61 m s-1. 

Although VWS of 7-12 m s-1 affected the storm during RI, high SSTs exceeding 29ºC may 

have facilitated the intensification.  

   Figure 2.1 shows how the large-scale environment surrounding Joaquin evolved as 

the storm moved southwestward. At 0000 UTC 30 Sep, when Joaquin is roughly halfway 

between its genesis position and its southwestern loop apex, a deep mid-to-upper-level 

trough extends from the Great Lakes southward into the Gulf of Mexico (Figs. 2.1a,b). 

Joaquin is sandwiched between a southwest-northeast oriented upper-level ridge on its 

northwest side and an upper-level trough over the southeastern Caribbean (Fig. 2.1a). 

Another upper-level low can be found well northeast of Joaquin, near 35ºN, 55ºW. The 

lower-to-middle level environment is dominated by an expansive ridge centered over the 

northern Atlantic southeast of Nova Scotia and by another ridge over western Cuba and the 

Yucatán Peninsula (Fig. 2.1b). The cloudy region well east of Joaquin near 35ºN, 55ºW 

(Fig. 2.1b) is associated with a west-northwestward moving frontal trough that had 
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absorbed the remnants of Tropical Storm Ida (Cangialosi 2015) several days prior. Forty-

eight hours later, as Joaquin nears the southwestern loop apex, the eastern U. S. trough has 

dug further south and east (Fig. 2.1c). Downstream of this trough, the upper-level ridge 

northwest of Joaquin has eroded. Meanwhile, the upper-level low northeast of Joaquin has 

drifted southwestward to a position near 30ºN, 60ºW (Fig. 2.1c), and the expansive cloudy 

region associated with the old frontal boundary has expanded westward toward Joaquin 

(Fig. 2.1d).   

 
 
Figure 2.1 Atmospheric motion vectors (AMVs) valid at 0000 UTC 30 Sep 2015, 
superimposed over GOES-13 water vapor imagery, with Joaquin denoted by the “J” 
symbol. Upper and lower levels are shown in (a) and (b), respectively, with vectors color-
coded by height. (c),(d) As in (a),(b) but for 0000 UTC 02 Oct 2015. The AMVs are derived 
from the University of Wisconsin-Madison Cooperative Institute for Meteorological 
Satellite Studies (UW-CIMSS) and these images were obtained from 
http://tropic.ssec.wisc.edu/archive/.  
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   After 1800 UTC 01 Oct, Joaquin’s intensity reached a steady state as it slowly 

meandered westward through the Bahamas, causing extensive destruction. Around 1200 

UTC 02 Oct, the storm began to accelerate to the northeast, steered by southwesterly winds 

surrounding the eastern U.S. trough. Six hours later, Joaquin began an 18-h re-

intensification leading to peak intensity, with its VMAX increasing from 57 to 69 m s-1. The 

storm weakened thereafter as it encountered lowering SSTs and increasing VWS. 

 

2.3 Methodology 

 2.3.1 WRF model settings 

The 114-h CTL simulation uses a two-way interactive, nonhydrostatic, quadruply 

nested, 27/9/3/1 km configuration of the Advanced Research core (ARW) WRF Version 

3.6.1 (Skamarock et al. 2008). Figure 2.2 shows the domain setup, where the outer 3 

domains are fixed and the innermost nest moves, following the 700-hPa vortex center at 

15-minute intervals. The 27, 9, 3, and 1-km domains, hereafter Domains 1, 2, 3, and 4, use 

the Mercator projection and have (x,y) dimension grid sizes of (300,190), (421,322), 

(514,514) and (601,601), respectively. The model top is set to 30 hPa, and Domains 1-4 

use the 55-vertical-level configuration from Chen et al. (2011), with the highest resolution 

in the boundary layer and near the model top. All four domains are initialized at 0600 UTC 

29 Sep, when Joaquin begins its 60-h RI as a tropical storm with an 18 m s-1 VMAX. Initial 

conditions for the 27- and 9-km domains are generated using a 30-h WRF Data 

Assimilation (WRFDA) hybrid 3DVAR data assimilation cycle, hereafter the WRFDA-

hybrid cycle (see chapter 3). Neither vortex bogusing nor relocation techniques are used in 

generating hybrid analyses from the background WRF forecasts. The 114-h CTL forecast 
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covers the observed RI, steady-state, and re-intensification episodes. Lateral and lower 

boundary conditions are taken from the NCEP 1-degree Final Analysis (hereafter 1°-FNL), 

except for the SSTs. Initial SSTs are interpolated from the NOAA daily 0.25-degree 

resolution OI-SST dataset, which blends Advanced Very High Resolution Radiometer 

(AVHRR) and in-situ observations using optimal interpolation (Reynolds et al. 2007).   

 
 
Figure 2.2 Model domain configuration, superimposed over 500-hPa geopotential height 
(5720, 5760, 5800, 5840 m, thin gray contours; 5880 m, thick gray contour) and 700-hPa 
horizontal wind vectors (m s-1), both from the 29 Sep 0600 UTC NCEP 0.25°-FNL. 
Domains 1, 2, 3, and 4 have 27, 9, 3, and 1-km resolutions, respectively. Domain 4 follows 
the storm center, with the upper-right and lower-left positions shown here corresponding 
to the initial time and southwestern apex of the looping track, respectively. The green line 
shows Joaquin’s best-track motion over the CTL simulation period (0600 UTC 29 Sep – 
0000 UTC 04 Oct). 
 

   We use a simple ocean mixed layer physics scheme developed for WRF-ARW (Davis 

et al. 2008) to parameterize the wind-induced SST cooling. This scheme neglects pressure 

gradients and horizontal advections but retains the Coriolis force, and it generates mixed-

layer currents and upwelling-induced cooling using the model-output surface winds, an 

initial mixed layer depth (set to 30 m) and deep-layer lapse rate (set to 0.14 K m-1) as inputs. 

Other physics options used are (i) the Thompson et al. (2004, 2008) microphysics scheme, 
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which contains 5 hydrometeor species (rain, cloud water, cloud ice, snow, and graupel); 

(ii) the Kain-Fritsch cumulus parameterization for the outer 2 domains (Kain and Fritsch 

1990); (iii) the YSU planetary boundary layer (PBL) parameterization with the revised 

MM5 Monin-Obukhov surface layer physics (Hong et al. 2006); and (iv) the Rapid 

Radiative Transfer Model (RRTM, Mlawer et al. 1997) longwave and Dudhia (1989) 

shortwave radiation schemes. Surface drag coefficients are taken from Donelan (2004). 

   We found that the most accurate track forecast could be achieved by applying 

analysis nudging (Stauffer and Seaman 1990) to the three fixed domains, whereby 

horizontal winds and temperature above the PBL are relaxed toward the 1°-FNL using a 

nudging coefficient of 3 ×	10-4 s-1. Through the full simulation period, nudging is applied 

to winds and temperature for Domains 1 and 2 and to winds for Domain 3.   

 2.3.2 Perturbed initial condition WRF sensitivity tests 

 A series of sensitivity tests is designed to perturb features in the CTL analysis that 

may be responsible for Joaquin’s southwest motion, one at a time. WRF simulations are 

run from each perturbed analysis with nudging turned off, but with other model settings 

kept identical to CTL, using the same unperturbed NCEP 1°-FNL boundary conditions 

outside of the 27-km domain. The CTL initial conditions are perturbed by assimilating 

synthetic observations, in addition to the real observations previously used for CTL, into 

the 0600 UTC 29 Sep WRFDA-hybrid cycle (see chapter 3) background forecast 27-km 

and 9-km domains. We follow Brennan and Majumdar (2011) as a general guide, adapting 

their methodology to a regional data assimilation system.  

   To perturb large-scale features (i.e., ridges and troughs), we assimilate synthetic 

temperature observations at a higher level that have either +4 K or –4 K departures from 
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the background temperature field. Synthetic temperature observation errors are set to 0.1 

K. The objective is to generate a temperature anomaly that modifies the geopotential height 

field above and below through hydrostatic adjustment both in the data assimilation, though 

the multivariate hybrid background error covariances, and in the subsequent WRF 

integration. For example, assimilation of 300 hPa temperature observations with -4 K 

departures from the background would be expected to reduce thicknesses in the layer 

surrounding 300 hPa, causing heights over a deeper layer below to rise. These tests, to be 

described in section 2.5.2, are named using the prefixes PERT-R or PERT-T, with the 

letters R and T indicating whether a ridge or trough is to be perturbed. 

 An additional sensitivity test, PERT-V, tests the impact of a weakened vortex on 

Joaquin’s track. Two types of synthetic vertical soundings, in addition to real observations, 

are assimilated into the WRFDA-hybrid cycle background forecast: (i) a single column, 

centered on Joaquin’s upper-level warm core, where the background temperature is 

reduced by 6 K every 50 hPa over the 500-200 hPa layer; and (ii) concentric rings, centered 

on the best-track fix, where the background relative humidity is reduced by 50% every 50 

hPa over the 1000-700 hPa layer.  Observation errors for (i) and (ii) are set to 0.1 K and 

10%, respectively. 

         2.3.3 Steering flow diagnostics 

   For a given pressure level p, we define the environmental winds within a disk 

bounded by radius r as the area-averaged horizontal flows that remain after removing the 

symmetric TC vortex. Following Hanley et al. (2001), we compute the modeled 

environmental wind venv,m (r, p) vector components after interpolating the Cartesian winds 

to cylindrical coordinates, using   
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             𝑢"fT,g(𝑟, 𝑝) =
L
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psL                 (2.1) 

  𝑣"fT,g(𝑟, 𝑝) =
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M

𝐴p
qr
psL ,                (2.2) 

where 𝑢g and 𝑣g are the interpolated Cartesian winds, overbars denote azimuthal 

averages, i is the radial index, Ir indexes vortex removal radius r, Ai is the annular area 

between radial indices i and i-1, and A = πr2. We take the NCEP 0.25-degree Final Analysis 

(hereafter 0.25°-FNL) as a proxy for the true atmosphere and compute the “observed” 

environmental wind venv,o (r,p) using Eqs. (2.1) and (2.2), with the m subscripts replaced 

with o. GFS forecast and 0.25°-FNL horizontal winds are re-gridded to a storm-centered 

Cartesian regional domain with 25-km horizontal resolution. Steering flow analysis for 

WRF simulations is performed on the 9-km resolution domain. We define the vortex center 

at every pressure level as the gridpoint surrounded by the largest circulation, or area-

averaged vorticity, within a 90-km radius,4 after Cavallo et al. (2013). All computed centers 

are visually checked against horizontal wind and vorticity fields, and they are corrected if 

necessary.  

   Vertical wind shear vector components are computed by setting r = 500 km and 

differencing the environmental winds between the 200 and 850 hPa levels: 

  𝑢GIt,g	 = 	𝑢"fT,g	 𝑟, 200	ℎ𝑃𝑎 − 𝑢"fT,g 𝑟, 850	ℎ𝑃𝑎 ,  (2.3) 

 𝑣GIt,g	 = 		 𝑣"fT,g	 𝑟, 200	ℎ𝑃𝑎 − 𝑣"fT,g(𝑟, 850	ℎ𝑃𝑎). (2.4) 

   We adopt the methodology developed by GD13 and define the optimal steering flow 

as the volume-averaged environmental wind that minimizes the vector difference from the 

																																																								
4	The 850-hPa center is located first, using the geopotential height centroid as a first-
guess, and the higher-level centers are then found in order of increasing height, using the 
previously found center as the first-guess. 
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simulated storm speed Vm. This difference, which we call the steering flow residual, results 

from errors in computing the environmental wind and storm speed, as well as from storm-

scale processes such as the redistribution of convection relative to the storm center in 

response to vertical shear. For model output, we test 72 combinations of vortex removal 

radii, every 100 km ranging from 200-700 km, and steering layer top levels above pb = 850 

hPa, every 50 hPa up to 250 hPa, in order to find the optimal radius rm and steering layer 

top level pt,m  yielding the smallest steering flow residual. The optimal steering flow Vopt,m 

is the pressure-weighted vertically averaged environmental wind vector: 

   𝑈|j},g = 	 L
j~�j�,i

𝑢"fT,g 𝑟g, 𝑝 𝑑𝑝,
j~
j�,i

               (2.5) 

   𝑉|j},g = 	 L
j~�j�,i

	𝑣"fT,g 𝑟g, 𝑝 𝑑𝑝.
j~
j�,i

               (2.6) 

The optimal observed steering flow Vopt,o, radius ro, and steering layer top level pt,o can 

similarly be found for the 0.25°-FNL using venv,o (r, p) and the observed storm speed Vo. 

To compute Vm (Vo), 24-h centered differences of 850-hPa center (NHC best-track) fixes 

are used. Thus, we can write the steering flow residuals for model and 0.25°-FNL data as 

    							𝑽d"�p�,g	 = 𝑽|j},g −	𝑽g,          (2.7) 

    							𝑽d"�p�,|	 = 𝑽|j},| −	𝑽|.          (2.8) 

Environmental wind profiles are evaluated at the optimal radius, with  

        𝒗g 𝑝 = 	𝒗"fT,g	 𝑟g, 𝑝 ,          (2.9) 

        𝒗| 𝑝 = 	𝒗"fT,|	(𝑟|, 𝑝).                          (2.10) 

Finally, we define 

        𝒗g 𝑝 = 	𝒗"fT,g	(𝑟|, 𝑝),                        (2.11) 
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which enables us to compare the model-output and 0.25°-FNL environmental wind 

profiles for the same disk region surrounding their respective centers. 

Model steering flow errors are quantified using the diagnostic equation derived in 

GD13:  

𝑽g −	𝑽|	
Y@	[FYqF^	A??F?

= 	 L
j~�j�,�

𝒗g − 𝒗| 𝑑𝑝
j~
j�,�

A^Gq?F^[A^Y>B	Iq^]	A??F?

  + L
j~�j�,i

− 𝒗g − 𝒗g
j~
j�,i

𝑑𝑝
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     + Vresid,m + Vresid,o.     (2.12) 

The left-hand side approximates the error in simulated TC motion, provided that Vresid,m 

and Vresid,o are both small. The right-hand side terms from left to right are the environmental 

wind error, vortex removal radius error, vortex depth error, and residuals in the model and 

observations, respectively. The first term approximates the error in model-output 

environmental winds, averaged over the observed optimal steering volume. The removal 

radius and vortex depth errors arise from the optimal steering flow calculation yielding 

different vortex removal radii and steering layer depths, respectively, for the model and the 

true storm. Physically, the removal radius (vortex depth) errors are related to model 

misrepresentation of vortex size (depth) when the environmental winds vary substantially 

in the horizontal (vertical) direction. For example, a northerly-directed vortex depth error 

would result when a model simulates an environment with northerly steering flow 

reasonably well but fails to develop a vortex deep enough to interact with the upper-level 

northerly steering winds. 
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2.4 Validation of the CTL simulation 

Before addressing the causes of Joaquin’s unusual track, it is necessary to validate 

CTL against observations. Figure 2.3 compares the CTL forecast track to the NHC best-

track positions. The southwestward motion toward the Bahamas, slow clockwise motion 

around the loop apex, and recurvature are all reproduced. The observed RI is well captured 

by CTL (Fig. 2.4a). The end of simulated RI (1200 UTC 01 Oct) coincides with significant 

slowing in the storm’s forward speed, by which time the Davis et al. (2008) 

parameterization has cooled mean inner-core SSTs along and to the right of the simulated 

track by ~ 0.5 °C relative to 24 h previously (Fig. 2.4c). Observational and modeling studies 

have shown that a 1°C reduction in inner-core SSTs can induce substantial weakening or 

preclude further intensification in an otherwise favorable environment, due to lowered 

surface enthalpy fluxes (Cione and Uhlhorn 2003; Zhu and Zhang 2006). The simulated 

PMIN begins to re-intensify around 1200 UTC 02 Oct, although the intensification rate is 

modest compared to the observations. As the storm accelerates northeastward away from 

its self-generated “cold pool”, local SSTs are warming while northwesterly VWS is 

increasing (cf. Figs. 2.3 and 2.4), as an upper-level low approaches from the east (not 

shown). 
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Figure 2.3 Six-hourly best-track (green) and model-simulated (black) Joaquin sea-level 
center positions plotted on a subset of the 3-km domain, with the WRF parameterized SST 
differences (K) between 1800 UTC 02 Oct and the initial time shown in shaded colors. 
Number labels indicate calendar days and show 0000 UTC best-track positions, with 
arrows pointing to the corresponding simulated positions. Letter labels “A” and “B” mark 
the simulated storm positions at the end of the observed RI and beginning of the observed 
re-intensification periods, respectively.  
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Figure 2.4 Time series of (a) best-track and simulated storm intensity in terms of the 
minimum central pressure (PMIN) and maximum 10-m wind (VMAX), (b) VWS (m s-1), and 
(c) VWS magnitude with inner-core parameterized SSTs averaged within 120 km of the 
simulated storm center.  Letter labels “A” and “B” in (a) correspond to the storm positions 
shown in Fig. 2.3. In (b) and (c), black colors show model-derived VWS, while green and 
blue colors show VWS computed from the ECMWF reanalysis and NCEP 1°-FNL, 
respectively. 
 

   Figure 2.5 compares model-simulated radar reflectivity against microwave satellite 

imagery for a few selected times. Five hours after initialization, the inner core remains 

highly asymmetric, with convection displaced south of the low-level circulation center in 

both the observations and the simulation (Figs. 2.5a,b). Previous TC modeling and 
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observational studies have shown that RI can be accompanied by an increasingly 

axisymmetric inner-core structure, with convection wrapping around the center (Rogers 

2010; Chen et al. 2011; Zagrodnik and Jiang 2014; Rogers et al. 2015; Rios-Berrios et al. 

2016; Fischer et al. 2018; Rios-Berrios et al. 2018); a similar trend can be seen for Joaquin 

as RI progresses (Figs. 2.5c-f). Nevertheless, a balanced vortex response to the northerly 

VWS (Jones 1995; Wang and Holland 1996; Molinari et al. 2006; Nguyen and Molinari 

2015) may have helped focus vigorous convection south of the storm center throughout RI 

(Figs. 2.5a-f). Dry air at the mid-to-upper levels north of the storm may have further 

suppressed convection in that region (Figs. 2.6a-c). The environment south of the eyewall, 

on the other hand, is nearly saturated from the PBL to the upper troposphere (Fig. 2.6d). 

Some erosion of the northern eyewall occurs during steady-state (not shown), and re-

intensification is accompanied by a re-invigoration of eyewall convection and the 

development of new convection underneath the upper-level low to Joaquin’s northeast 

(Figs. 2.5g,h).  
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ß Figure 2.5 Left panels: 85-GHz satellite imagery for (a) 1050 UTC 29 Sep, (c) 0900 
UTC 30 Sep, (e) 1246 UTC 1 Oct, and (g) 1221 UTC 3 Oct, obtained from the Naval 
Research Laboratory TC pages https://www.nrlmry.navy.mil/tc_pages/tc_home.html. Red 
colors show areas of deep convection while cyan bands indicate shallow convection and/or 
enhanced low-level relative humidity. Right panels: Model-simulated composite 
reflectivity (shaded, dBz) with 10-m flow vectors valid at (b) 1100 UTC 29 Sep, (d) 0900 
UTC 30 Sep, (f) 1300 UTC 1 Oct, and (h) 1200 UTC 3 Oct. White triangle in (a) marks 
the 1200 UTC 29 Sep best-track center location. 
 
 

 
 
Figure 2.6 (a) GOES-13 water vapor satellite brightness temperature (°C) compared against (b) the simulated 
composite radar reflectivity (shaded, dBz), 700-200 hPa layer-averaged relative humidity (contoured) and 
850-hPa horizontal flow vectors, with both (a) and (b) valid at 2000 UTC 29 Sep. Symbols “A” and “B” 
mark release positions of G-IV dropsondes falling during the 2000-2100 UTC 29 Sep period, and their 
corresponding skew T-log p diagrams are compared against model soundings at the same locations in (c) and 
(d), respectively. In (c) and (d), simulated winds and temperature are plotted in red, with dropsonde winds 
and temperature shown in orange. Simulated (dropsonde) dewpoint is plotted in blue (green). 

a b

c d
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Figure 2.7 (a)-(c) Air Force C-130 flight-level (~ 700-hPa) wind speed (blue) and 
temperature (dark orange) recorded during transect legs at various times during Joaquin’s 
lifecycle. Simulated wind (green) and temperature (light orange) at 700 mb along the same 
transects, horizontally translated to align with the simulated storm center, are shown for 
comparison. Abscissa shows distances (km) from storm center along the flight legs.  
 

   Zooming into the inner core, we next examine flight-level wind and temperature 

profiles from the Air Force Reserve 53rd Weather Reconnaissance Squadron C-130 aircraft 

missions flown during Joaquin’s southwest movement period, comparing them to cross-

sections taken through CTL (Fig. 2.7). The model reproduces the sharpening tangential 
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wind profile and low-level eye warming observed during RI (Figs. 2.7a,b), and also the 

weakened low-level warm anomaly for the steady-state period (Fig. 2.7c).  

 

2.5 Steering flow analysis 

        2.5.1 GFS forecast errors 

   We begin our steering-flow analysis by examining two operational GFS forecasts, 

initialized at 1200 UTC on 29 and 30 Sep, respectively, and diagnosing their track error 

sources using the GD13 budget equation. When analyzing the large-scale steering 

environment, we use the 0.25°-FNL rather than CTL as the “truth dataset” because, as 

discussed in section 2.3.1, analysis nudging was used to force winds in the outer three CTL 

domains toward the 1°-FNL. The 1200 UTC 29 Sep GFS forecast, initialized 6 h after CTL, 

tracks the low-level center westward for 48 h before turning it sharply north and eventually 

northeast into the western Atlantic (Fig. 2.8a). It also fails to intensify Joaquin (Figs. 

2.8b,c). Whereas the CTL upper-level center becomes aligned with the surface center 

within 18 h (Fig. 2.8a), the 29 Sep GFS upper-level center drifts slowly west-southwest 

during the first 60 h, maintaining ~200 km of separation from the low-level center (not 

shown). The GFS vortex, initialized 24 h later (i.e., at 1200 UTC 30 Sep), is now vertically 

aligned (not shown), despite being 10 m s-1 weaker in VMAX compared to the best-track data 

(Figs. 2.8b,c). Although it initially tracks southwestward, it ceases this motion 24 h earlier 

than the observed storm, turning due west and then north (Fig. 2.8a), eventually making 

landfall on the North Carolina coast (not shown). 
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ß Figure 2.8 (a) Track forecasts for CTL and the initial condition sensitivity WRF runs, 
with the 1200 UTC 29 Sep and 1200 UTC 30 Sep operational GFS forecasts also shown. 
Closed circles show initial sea-level center positions and squares show sea-level center 
positions for each subsequent 0000 UTC time. Time labels are given in ddhh format, where 
dd and hh denote the two-digit calendar day and hour, respectively. The open circle and 
dotted line show the initial position and track of the CTL upper-level center prior to the 
vortex becoming vertically aligned. Minimum central pressure (PMIN) and maximum 10-m 
wind (VMAX) forecasts are shown in (b) and (c), respectively.  
 

Figure 2.9 plots time series of the 0.25°-FNL environmental steering wind u and v 

profiles, along with their differences from the 1200 UTC 29 and 30 Sep cycle GFS 

forecasts. The FNL environmental winds show substantial VWS over the 48-h period 

beginning 1200 UTC 29 Sep that coincides with Joaquin’s southwestward motion (Figs. 

2.9a,b). Northeasterly environmental winds, associated with the height gradient between 

the upper-level ridge to the northwest and the upper-level trough to the southeast (Fig. 

2.1a), intensify above 600 hPa. Joaquin’s northeastward motion out of the Bahamas after 

1200 UTC 02 Oct coincides with southwesterly environmental winds developing over the 

850-500 hPa layer (Figs. 2.9c,d). This is consistent with anticyclonic deep-layer winds west 

of Joaquin becoming cyclonic as the digging eastern U. S. trough erodes the upper-level 

ridging northwest of Joaquin and lower-level ridging over Cuba (Fig. 2.1c,d). 

 Compared to the 0.25°-FNL, the 1200 UTC 29 Sep GFS initialized environmental 

winds have a 1-2 m s-1 easterly wind speed bias below 400 hPa and a 1-2 m s-1 southerly 

wind speed bias in the 550-750 hPa layer (Figs. 2.9a,b). Twelve hours later, the GFS 

southerly wind speed bias has increased to ~2 m s-1 in a deep layer. This bias grows larger 

in the upper levels after 24 h (Fig. 2.9b), although by this time the environmental wind 

differences may be more strongly related to the GFS-forecast Joaquin moving into a 

different large-scale flow environment, given its substantial track divergence from 

observations (cf. Figs. 2.3 and 2.8a). The 1200 UTC 30 Sep cycle GFS environmental 
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winds show less difference from the 0.25°-FNL over the first 30 forecast hours, consistent 

with the smaller track errors over this period, but they have the same general easterly and 

southerly biases (Figs. 2.9c,d). 

 
 

 
 
Figure 2.9 (a) Environmental u-wind profile time series for the 0.25°-FNL (shaded, m s-

1), with differences in environmental u-winds from the 1200 UTC 29 Sep cycle operational 
GFS forecast (GFS – 0.25°-FNL; dot-contoured for -8, -6, -4, -2, -1, -0.5 m s-1, and solid-
contoured for 0.5, 1, 2, 4, 6, 8 m s-1). Green line denotes the top of the GFS forecast optimal 
steering layer, computed as a running mean over the 12-h period centered on the current 
time. (b) As in (a), but for environmental v-winds. (c) and (d) As in (a) and (b), but for 
differences between the 0.25°-FNL and the 1200 UTC 30 Sep cycle operational GFS. 
Environmental winds for (a)-(b), and (c)-(d) are computed using 400-km and 500-km 
vortex removal radii, respectively, corresponding to the mean optimal steering radii for the 
respective GFS forecasts over the periods shown. Note that an optimal steering depth is not 
shown for the first 12-h GFS forecast periods because this calculation uses 24-h centered 
differences in forecast storm position.  
 

   Figure 2.10 shows large-scale geopotential height differences between the 1200 UTC 

30 Sep cycle GFS forecast and the 0.25°-FNL, averaged over the lower, middle, and upper 

1200	UTC	29	Sep	GFS	- FNL 1200	UTC	30	Sep	GFS	- FNL1200	UTC	29	Sep	GFS	forecast	- FNL 1200	UTC	30	Sep	GFS	forecast	- FNL
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portions of the 850-250 hPa FNL optimal steering layer for two representative times. The 

12-h GFS forecast turns Joaquin west, while CTL and the observed storm continue moving 

southwest for another 24 h (cf. Figs. 2.3 and 2.8a). For the 850-650 hPa layer (Fig. 2.10a), 

the 12-h GFS forecast generates 5-10 m lower heights around the base of the eastern U.S. 

trough and stronger low-level ridging northeast of the frontal wave centered near 27°N, 

60°W. The GFS-forecast mid to upper level environment similarly has a low (high) height 

bias west (northeast) of Joaquin (Figs. 2.10b,c) due to its stronger eastern U.S. trough, 

weaker downstream ridging northwest of Joaquin, and weaker mid-to-upper level low well 

northeast of the storm near 33°N, 55°W. Twenty-four hours later, the 36-h GFS forecast is 

turning Joaquin onto a long-term northward heading, eventually bringing it to a U.S. 

landfall, while the observed storm is located over 100 km further south and slowly moving 

westward (cf. Figs. 2.3 and 2.8a). Compared to the 12-h forecast, the 36-h GFS forecast 

heights show similar, albeit more pronounced, differences from the 0.25°-FNL. The more 

strongly positive GFS zonal near-storm height anomaly gradient is consistent with the 

increased southerly GFS environmental wind anomaly through a deep layer (cf. Figs. 2.9d 

and 2.10d-f). The largest differences from the 0.25°-FNL are found above 650 hPa over 

Florida and adjacent Atlantic waters, where the GFS-forecast eastern U. S. trough is deeper, 

and near 24-33°N, 55°W where the GFS-forecast mid-to-upper-level trough, along with its 

lower-level reflection, are weaker. N18 showed similar differences in 24-h forecast large 

scale 700 hPa height patterns between their deterministic WRF simulation that captured 

the looping track and a composited group of U.S. landfalling ensemble members (see their 

Fig. 15f). 
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Figure 2.10 (a) Geopotential height difference (m, shaded) between the 1200 UTC 30 Sep cycle operational 
GFS 12-h forecast and the NCEP 0.25°-FNL valid at the same time (GFS – FNL), computed at each 
diagnostic pressure level and then averaged over the 850-650 hPa layer. FNL and GFS-forecast 750-hPa 
geopotential height for this time are contoured in black and gray, respectively, over the range 
2530/2560/2590/2620 m. FNL horizontal winds (m s-1) are also shown. Black (blue) closed circles denote 
the best-track (GFS forecast) storm centers. (b) As in (a) but for height differences averaged over the 650-
450 hPa layer, with 500-hPa height (contoured at 5780/5810/5840/5870 m) and winds. (c) As in (a) but for 
height differences averaged over the 450-250 hPa layer, with 300-hPa height (contoured at 
9550/9600/9650/9700 m) and winds. (d)-(f) As in (a)-(c), but for the 1200 UTC 30 Sep cycle operational 
GFS 36-h forecast and 0.25°-FNL valid at the same time. Blue open circles in (a)-(c) and (d)-(f) denote 500-
km and 433-km GFS optimal steering radii respectively computed for the times shown. Thickened contours 
emphasize the troughs approaching Joaquin from the northwest and east.  
 



	

	 	 	47	

Next, we apply the GD13 TC motion error budget equation to both representative GFS 

forecasts to determine whether model misrepresentation of the vortex size or depth also 

contributes to the track forecast error (Fig. 2.11). As in GD13, we restrict this analysis to 

the first 24-h forecast, so that the modeled and observed storm steering environments are 

not too far apart relative to the scale of the flow features being studied. For the forecast 

initialized on 29 Sep, the northwesterly-directed environmental wind error and 

northeasterly-directed vortex depth error vectors both contribute significantly toward a ~2 

m s-1 northerly TC motion error. The vortex depth error results from the shallower GFS 12-

24 h forecast optimal steering layer, which extends up to ~400 hPa (Figs. 2.9a,b), compared 

to the 850-250 hPa 0.25°-FNL optimal steering layer for the period of Joaquin’s southwest 

movement (not shown). This calculation implies that the GFS forecasts a shallower vortex 

that is less affected by northeasterly steering winds above 400 hPa (Figs. 2.9a,b), as 

compared to the true storm. In contrast, the GFS forecast initialized on 30 Sep has a 12-24 

h northerly motion error of ~1 m s-1, which results primarily from the environmental wind 

error, as the steering layer is now deeper, extending up to ~300 hPa (cf. Figs. 2.9c,d and 

2.11). Both the vortex removal radius error and residual remain relatively small for these 

GFS forecasts.  
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Figure 2.11 Time series of Galarneau and Davis (2013) TC motion equation error budget 
terms (m s-1) for selected model forecasts, with u- and v- components combined into vector 
form. 
 
 2.5.2 Sensitivity tests to WRF initial conditions 

To examine to what extent the large-scale flow and vortex depth errors diagnosed 

above contribute to track forecast errors, several sensitivity simulations are run from 

perturbed analyses with nudging turned off while all other settings are kept identical to 

CTL. The first sensitivity test is termed as NONUDGE, in which nudging is turned off but 

the CTL analysis is not perturbed. Although NONUDGE also captures the looping track, 

with southwestward motion followed by a northeast turn (albeit in the wrong direction), it 

fails to generate sustained southward motion during the first 24 h (Fig. 2.8a). The track 

differences between CTL and NONUDGE may result from a combination of (i) model 

physics error in the outer three domains, and (ii) biases in the CTL initial conditions with 

1200	UTC	30	Sep	GFS

1200	UTC	29	Sep	GFS

PERT-V

PERT-R_WE

NONUDGE

CTL
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respect to the 1°-FNL, shown in Fig. 2.12. In the lower levels, we find a CTL low-height 

bias over a broad region extending northward, southward, and westward from Joaquin that 

encompasses much of the continental U.S. east of the Rockies, Gulf of Mexico, and Central 

America; particularly notable are the > 6 m lower CTL heights immediately northwest of 

Joaquin that extend from the Cuba ridge to the southwest corner of the north Atlantic ridge 

centered near 37°N, 55°W (Fig. 2.12a). The central portion of the latter ridge is also 

stronger in CTL. In the mid-to-upper levels (Fig. 2.12b), the subtropical ridge directly 

northwest of Joaquin and the upper-level trough centered near 35° N, 55° W are both 

weaker in CTL. Overall, the CTL initial conditions and GFS 12-h forecast valid 42 h later 

(Fig. 2.10a-c) share similar differences from the 0.25°-FNL in their representation of large-

scale features surrounding Joaquin.  
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Figure 2.12 (a) Geopotential height differences between the 0600 UTC 29 Sep NCEP 
0.25°-FNL and the CTL initial conditions (CTL - FNL), computed at each pressure level 
and then averaged over the 850-600 hPa layer (shaded, m) with 700-hPa FNL geopotential 
height (contoured, m) and horizontal flow vectors (m s-1). (b) As in (a) but for geopotential 
height differences averaged over the 600-250 hPa layer, with 400-hPa FNL geopotential 
height and winds. Black triangle denotes the 0600 UTC 29 Sep best-track Joaquin position. 
Black, purple and green dots show the respective synthetic observation locations for the 
PERT-R_WE, PERT-R_ATL, and PERT-T experiments.  
 
 

Using the CTL initial condition and GFS forecast biases as a starting point, we now 

identify features in Joaquin’s environment that may be important to its steering. We perturb 
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these features in the CTL analysis, one at a time, using the methods of section 2.3.2 and re-

run CTL without nudging (Table 2.1; Figs. 2.12, 2.13). The first three tests are designed to 

strengthen the northerly geostrophic winds across Joaquin’s near-storm environment. 

PERT-R_W enhances mid-to-upper level ridging immediately west of Joaquin, PERT-R_E 

weakens mid-to-upper level ridging immediately to the east, and PERT-R_WE combines 

the impacts of PERT-R_W and PERT-R_E. In PERT-R_WE, for example, generating a 

300 hPa cold anomaly along the axis of the ridge northwest of Joaquin increases heights 

by ~ 4-10 m over a deep layer below, with the greatest impacts between 400 and 700 hPa 

(Figs. 2.13a,c). The next two experiments test the sensitivity of Joaquin’s southwest motion 

to perturbations in more distant features. PERT-R_ATL weakens the central portion of the 

northern Atlantic 700-hPa ridge – here the intention is to weaken the low-level anticyclonic 

flows on its southwestern periphery. PERT-T investigates whether weakening the eastern 

U.S. trough might strengthen (or at least delay the weakening of) the downstream 

subtropical ridge northwest of Joaquin. PERT-V tests the sensitivity of Joaquin’s motion 

to a weakened vortex. Compared to CTL, the PERT-V-analyzed upper-level warm 

temperature anomaly is weakened by ~ 50% and 850-hPa water vapor mixing ratios are 

reduced by >3 g/kg inside of a 2° latitude radius (Figs. 2.13b,d). The multivariate hybrid 

background error covariances have also slightly weakened and broadened the 800-400 hPa 

layer vortex circulation (Fig. 2.13d). 
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Table 2.1 Summary of the perturbed initial condition WRF sensitivity tests. Synthetic 
observation pressure levels and perturbation strengths are shown here for each experiment, 
and their locations are shown in Figs. 2.12 and 2.13. For all layer soundings, observations 
are assimilated every 50 hPa. T and RH denote temperature and relative humidity, 
respectively. 
 

Name                                       Objective                                                      Level (hPa)    Type   Strength                                                    

PERT-R_W        strengthen 850-300 hPa layer ridging northwest of Joaquin        300          T           -4 K 
PERT-R_E         weaken 850-300 hPa layer ridging southeast of Joaquin              300          T            4 K 
PERT-R_WE     combine the impacts of PERT-R_W and PERT-R_E                   300          T    -4 and 4 K 
PERT-R_ATL    weaken 850-600 hPa layer ridging in north-central Atlantic    600-400       T            4 K 
PERT-T              weaken eastern U.S. trough over 850-300 hPa layer                  300          T           -4 K   
PERT-V              weaken TC Joaquin vortex                                                        500-200      T           -6 K 
                                                                                                                             1000-700      RH      -50 % 
                                                                                                                             
 
 

 
 
Figure 2.13 Perturbed initial conditions used for WRF sensitivity tests. (a) Geopotential 
height differences (shaded, m) between the PERT-R_WE and CTL analyses (PERT-R_WE 
– CTL), averaged over the 850-350 hPa layer. Green (black) contours show the CTL (0600 
UTC 29 Sep 0.25°-FNL) 5880-m 500-hPa geopotential height. Green (black) triangles 
mark the current CTL surface (best-track) storm center, while black dots mark the locations 
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of synthetic 300-hPa temperature observations used in generating the PERT-R_WE 
analysis. (b) Differences in 850-hPa water vapor mixing ratio between the PERT-V and 
CTL analyses (PERT-V – CTL; g/kg; -1, thin contours and -3/-5, thick contours), with CTL 
analyzed 850-hPa water vapor mixing ratio (shaded, g kg-1) and horizontal winds (vectors, 
m s-1). Orange (yellow) crosses mark synthetic moisture (temperature) sounding locations 
used in generating the PERT-V analysis.  (c) Geopotential height differences (shaded, m) 
between the PERT-R_WE and CTL analyses (PERT-R_WE – CTL), averaged along a 36-
km wide vertical cross-section taken along the line running from A to B in (a). (d) Vertical 
cross-section of the CTL analyzed horizontal wind speed (shaded, m s-1), with analysis 
horizontal wind speed differences (PERT-V – CTL, -2/-4 m s-1, contoured in black), taken 
along a 36-km wide line running from A to B in (b). Red (yellow) contours denote CTL 
(PERT-V) temperature anomalies (T¢(z), 3/5 K; calculated with respect to a 500-1500 km 
annular averaged CTL reference profile). Horizontal in-plane flow vectors for the CTL 
analysis are also shown. 
 

Among all sensitivity experiments, PERT-R_WE yields the most significant 

increase in southward motion, with its forecast track falling roughly halfway between those 

of NONUDGE and CTL over the first 48 h (Fig. 2.8a). The GD13 TC motion error budget 

confirms that the PERT-R_WE track forecast improvement results from a ~70% smaller 

northerly-directed environmental wind error (Fig. 2.11). The PERT-R_WE analysis 

perturbations persist after 18-h model integration, when ridging west (east) of Joaquin 

remains stronger (weaker) compared to NONUDGE at both 700 and 500 hPa (Fig. 2.14). 

Notably, the 18-h PERT-R_WE forecast removes the anomalous NONUDGE ridging 

immediately east of Joaquin that is not present in the 0.25°-FNL (Figs. 2.14a,b). The PERT-

R_W and PERT-R_E forecast tracks are similar, and they fall roughly halfway between 

the NONUDGE and PERT-R_WE tracks (not shown). By contrast, PERT-R_ATL and 

PERT-T yield no track forecast improvement compared to NONUDGE (also not shown). 

While it is tempting to conclude, based on these results, that Joaquin’s southwest motion 

is less sensitive to the north Atlantic 700-hPa ridge and eastern U.S. trough compared to 

the near-storm environment, it is possible that a different experiment design that perturbed 

the former two features more strongly and/or from an earlier forecast start time could have 
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elicited a stronger track response. Nevertheless, our results are consistent with N18 and 

Torn et al. (2018), who found that Joaquin’s early southwest motion was more sensitive to 

the near-storm environment than to more distant synoptic-scale features. PERT-V, on the 

other hand, steers Joaquin’s lower-level center due northwest (Fig. 2.8a). It also fails to 

intensify the storm (Figs. 2.8b,c) and align the lower-level and upper-level centers (not 

shown). The GD13 error budget analysis confirms that the largest contributor to the ~ 4 m 

s-1 PERT-V northward motion error is the vortex depth error, which had been near zero for 

NONUDGE (Fig. 2.11). 
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Figure 2.14 (a) Geopotential height (shaded, m) and horizontal flow vectors (m s-1) from 
the 0000 UTC 30 Sep NCEP 0.25°-FNL with NONUDGE 18-h forecast geopotential 
height (m) contoured in black at 20-m intervals and PERT-R_WE 18-h forecast 
geopotential height contoured in gray over the same interval range, all from the 700-hPa 
level. (b) As in (a), but from the 500-hPa level, with NONUDGE and PERT-R_WE 
geopotential height contoured at 30-m intervals. White triangles denote the 0000 UTC 30 
Sep best-track Joaquin position.  
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   2.5.3 Impact of vortex structural changes on Joaquin’s motion 

   It is possible that changes to Joaquin’s vortex structure may have also helped draw 

the center southward during the early CTL simulation period, i.e., prior to 0000 UTC 30 

Sep. That is, Joaquin’s vortex undergoes two simultaneous processes that have been well 

documented in observational, modeling, and theoretical studies of TCs intensifying under 

moderate VWS (Reasor et al. 2013; Rogers et al. 2015; Nguyen and Molinari 2015; Rios-

Berrios et al. 2016; Rios-Berrios et al. 2018): (i) axisymmetrization, as convection that had 

previously been focused south of the center wraps into the upshear quadrants (Fig. 5a-d); 

and (ii) reduction in the vertical tilt (Fig. 8a). For some moderately sheared TCs, 

particularly those in early stages of development, these two processes may be driven by 

downshear vortex reformation. For example, explosive deep convection on the downshear 

(eastern) side of Tropical Storm Gabrielle (2001) facilitated the concentration of low-level 

cyclonic vorticity through convergence and stretching; the new vortex grew vertically deep 

while absorbing the parent circulation over a 4-h period prior to landfall in southwest 

Florida (Nguyen and Molinari 2015). This process likely accounted for Gabrielle having a 

best-track speed that was nearly double the mean environmental flow speed over this period 

(Molinari et al. 2006).  

Figure 2.15 shows the evolution of the CTL radar reflectivity, sea-level pressure (SLP) 

field, and 850- and 500-hPa level circulations over the first 18 h. At the CTL initial time, 

the vortex tilts downshear-left, and deep convection is confined to the downshear quadrants 

(Figs. 2.15a,b). Six hours later, a local SLP minimum has developed where the downshear-

left corner of a larger, elliptically shaped low-level circulation intersects the northwest edge 

of the deep convection (2.15c). The local SLP minimum is co-located with enhanced low-
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level cyclonic vorticity, and it lies beneath the upper-level center (Fig. 2.15d). By 1800 

UTC 29 Sep, deep convection has wrapped cyclonically into the upshear-left quadrant and 

the low-level circulation has contracted and intensified (Fig. 2.15e). While both the upper-

level and lower-level centers have continued moving southwestward (Fig. 2.8a), the former 

is now positioned upshear-left relative to the latter, and the tilt is reduced to ~30 km, 

compared to ~80 km 6-h prior (Figs. 2.15d,f). Six hours later the vortex is vertically aligned 

and a closed circular eyewall has formed (Figs. 2.15g,h). The CTL vortex structural 

changes over the 0600 UTC 29 – 0000 UTC 30 Sep period bear some similarity to the 

Tropical Strom Gabrielle downshear reformation process (see Figs. 7, 9 and 15 in Nguyen 

and Molinari 2015); however, unlike for Gabrielle, the developing downshear circulation 

in Joaquin never fully “takes over” from the parent circulation. Rather, both centers merge 

in concert with the vortex vertical alignment (Figs. 2.15b,d,f). A deeper investigation of 

the dynamical and thermodynamic processes driving these structural changes, and of how 

they relate to Joaquin’s RI, warrants further study.  
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Figure 2.15 (a) CTL analyzed composite reflectivity (dBz, shaded) with sea-level pressure (hPa; thick gray 
contours below 1000 hPa, thin gray contours for 1000 hPa and above) and 850-hPa horizontal winds (m s-1), 
valid at 0600 UTC 29 Sep. Thick black arrow to the left of the panel denotes the 850-200 hPa VWS vector, 
with its magnitude (m s-1) labeled above. (b) As in (a), but with relative vorticity (×	104 s-1) at 850 hPa 
(shaded) and at 500 hPa (contoured for 4/8/12). Black (blue) vectors show 850-hPa (500-hPa) horizontal 
winds (m s-1), scaled to the vector length from (a). Black (blue) triangles show the 850-hPa (500-hPa) 
circulation center. (c),(d) As in (a),(b) but for the 6-h CTL forecast, valid at 1200 UTC 29 Sep. (e),(f) As in 
(a),(b) but for the 12-h CTL forecast, valid at 1800 UTC 29 Sep. (g),(h) As in (a),(b) but for the 18-h CTL 
forecast, valid at 0000 UTC 30 Sep. Sea-level pressure is contoured at 2 hPa intervals for (a),(c) and 4 hPa 
intervals for (e),(g). All variables are taken from the 9-km model domain.  
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To what extent did the contraction and vertical alignment of Joaquin’s vortex cause 

additional southward motion in the low-level center that cannot be accounted for by the 

environmental winds? Between 0600 and 1800 UTC 29 Sep, the CTL 850-hPa center 

moves southwest with motion vector (u, v) = (-1.46, -1.67) m s-1. Applying the optimal 

steering flow calculation (see section 2.3.3) to CTL at 1200 UTC 29 Sep yields the 

vertically-averaged environmental wind vector (Uopt, Vopt) = (-1.86, -0.87) m s-1, with a 

steering depth and vortex removal radius of 850-250 hPa and 700 km, respectively. Despite 

being a rough estimate5, this calculation implies that vortex reorganization over the first 12 

h causes a 0.4 m s-1 eastward and 0.8 m s-1 southward deviation from the environmental 

steering winds in the CTL motion – a significant contribution. 

 2.5.4 Vortex-scale response to steering environment 
 

   The steering flow analysis in sections 2.5.1-2.5.3 above has explored the sensitivity 

of Joaquin’s motion to environmental steering features, vortex intensity and depth, and 

vortex reformation. In reality, TC steering is controlled by the interaction between the 

cyclonic circulation and the environmental flow. Let us now take a closer look at how 

Joaquin’s circulation interacts with the steering environment using vertical cross sections 

taken through five representative 12-h forecasts. All cross sections are taken in the NW-

SE direction, which is approximately orthogonal to Joaquin’s observed motion during these 

times.  

   The 12-h CTL vortex, now near-vertically aligned, has a notable circulation 

asymmetry, with stronger (weaker) northeasterly (southwesterly) winds northwest 

																																																								
5	This calculation assumes that the environmental steering winds, vortex depth, and 
vortex size at 1200 UTC 29 Sep remain constant over the +/- 6 h window surrounding 
this time.  
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(southeast) of the center. This pattern is evident both in the 500-hPa planar view (Fig. 

2.16a) and in winds orthogonal to the cross-section inside of the ~333 km optimal steering 

radius, especially above 600 hPa (Fig. 2.16b). Removal of the azimuthally averaged 

tangential winds would yield residual northeasterly winds in the northwestern circulation 

that may be important in steering Joaquin southwestward. In contrast, the westward-

moving NONUDGE storm (Fig. 8a) circulation is more symmetric through a deep layer 

(Figs. 2.16c,d). Nudging wind and temperature on the three fixed domains towards the 1°-

FNL has re-aligned the strongest 500-hPa ridging, denoted by the 5890 m contour, from 

northeast of the center in NONUDGE to due north of the center in CTL (Figs. 2.16a-d). 

PERT-R_WE, which has partially recovered the observed southwest motion (Fig. 2.8a), 

shows a near-storm 500-hPa environment more like CTL, with enhanced ridging north and 

west of the center (Fig. 2.16e). Compared to NONUDGE, PERT-R_WE has restored the 

northwest-southeast inner core circulation asymmetry found in CTL, especially over the 

700-400 hPa layer, where height perturbations in the initial conditions are largest (cf. Figs. 

2.13c and 2.16e,f). Compared to the other three simulations, the PERT-V and 1200 UTC 

29 Sep GFS 12-h forecasts both have considerably weaker vortices that tilt southeastward 

with height, and their highest cyclonic potential vorticity is concentrated below 650 hPa 

(Figs. 2.16g-j), which is consistent with their significantly larger vortex depth errors (Fig. 

2.11). 
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ß Figure 2.16 (a) CTL 12-h forecast 500-hPa horizontal wind vectors (m s-1) with 
geopotential height (contoured every 10 m over the 5870-5890 m range), superimposed 
over 850-hPa relative vorticity (×	104 s-1). (b) Vertical cross-section, 90-km wide, taken 
along the line running from A to B in (a), with distances (km) marked on the abscissa. 
Horizontal winds normal to the cross-section are shaded (m s-1), with positive (negative) 
values assigned to winds directed into (out of) the page. Green contours plot Ertel potential 
vorticity [-2/-1/1/2/4/8/12 Potential Vorticity Units (PVU), dotted for negative values]. In-
plane flow vectors (m s-1; vertical motions multiplied by 5) are also shown. Black 
rectangles show the optimal steering flow volume centered on the low-level storm center, 
with dimensions averaged over the 6-18 h period. (c,d), (e,f), (g,h), and (i,j) As in (a,b) but 
for the 12-h NONUDGE, PERT-R_WE, PERT-V, and 1200 UTC 29 Sep cycle GFS 
forecasts. For (b,d,f,h,j), flow vectors are scaled to 20 m s-1 for the same unit vector length 
used for (a,c,e,g,i).       
 

Returning to CTL and examining a few later times during its southwest movement 

period, we find that the strongest 500-hPa ridging remains northwest of the storm, 

consistent with the 500-hPa circulation being stronger on the northwest side and weaker 

on the southeast side of the center (Figs. 2.17a,c,e). Vertical cross sections show this 

circulation asymmetry to be prominent above 600 hPa (Figs. 2.17b,d,e). These results 

suggest that Joaquin interacted with its steering environment over a broad radial band that 

extended deep into the inner-core region, to < 100 km from the storm center. Other high-

resolution case studies (Marks et al. 1992; Liu et al. 1999) similarly found that TC steering 

could be largely explained by translational flows within the inner-core region. 



	

	 	 	63	

 

Figure 2.17 As in Fig. 2.16, but for the CTL 24-h forecast (a,b), 36-h forecast (c,d), and 
48-h forecast (e,f). For (a,c,e), the 5850, 5860, and 5870 m 500-hPa geopotential height 
contours are shown. Note the different vector length scale used for (a,c,e) compared to Fig. 
2.16 (a,c,e,g,i). This length scales to 20 m s-1 for (b,d,f). Also note the different shading 
scale used for (b,d,f), compared to Fig. 2.16 (b,d,f,h,j). 
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2.6 Summary and Concluding Remarks 

   This chapter has examined the atmospheric features that steered Hurricane Joaquin 

(2015) onto its climatologically unusual looping track, where the storm tracked 

southwestward for several days followed by slow clockwise turning and recurvature to the 

northeast. We focused on the period of Joaquin’s southwest motion because (i) many early-

cycle operational forecasts struggled to capture the persistence of this motion, and (ii) this 

steering positioned the storm far enough south relative to a southeast U. S. mid-to-upper 

level low such that it could be steered out to sea rather than be pulled towards the U. S. 

coast by the winds surrounding the low.  

   We began by validating the 1-km resolution WRF CTL simulation against 

observations. CTL initialized Joaquin as a weak tropical storm and reproduced its RI and 

looping track. The WRFDA-hybrid generated CTL initial conditions were biased relative 

to the 0.25°-FNL, whereby deep-layer ridging was too weak northwest of Joaquin; nudging 

of horizontal winds (temperature) towards the 1°-FNL on the outer three (two) domains 

adjusted the WRF large-scale conditions such that by 24 h they were quite similar to those 

of the 0.25°-FNL (not shown).  

   Next, we analyzed steering flows for two representative operational GFS forecasts. 

Using the GD13 TC motion error budget equation, we found that the 1200 UTC 29 Sep 

cycle forecast failed to generate any sustained southward motion due to (i) a deep-layer 

southerly wind bias in the storm steering environment that was present in the initial 

conditions and grew larger over time and (ii) an insufficiently deep vortex that did not 

strongly interact with northeasterly environmental steering flows above 400 hPa. The 1200 

UTC 30 Sep cycle GFS forecast, on the other hand, initialized a stronger, vertically aligned 
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vortex that responded to a deeper steering layer. Here, northerly-directed motion errors 

after 12 h resulted primarily from a deep-layer southerly environmental wind forecast bias 

relative to the 0.25°-FNL, which was shown to be consistent with inadequately strong 

ridging west of the storm at 12 h, as well as with the GFS digging the eastern U.S. trough 

further south and east over Florida at 36 h. Berg (2016) compared 72-h GFS and ECMWF 

forecasts and similarly found a deeper vortex and a less progressive eastern U.S. trough in 

the ECMWF forecast, which had significantly lower track errors (see his Fig. 10). 

   A unique contribution from this study was to show, using WRF initial condition 

sensitivity tests, that Joaquin’s southwest motion was sensitive to both track error sources 

diagnosed from the early-cycle GFS forecasts: namely, the environmental wind and vortex 

depth errors. In order to simulate Joaquin’s southwest motion, the WRF model must 

generate both a sufficiently strong mid-to-upper level ridge northwest of the storm and a 

sufficiently deep vortex to interact with the geostrophic flows around the east side of the 

ridge. Cross sections taken from CTL during Joaquin’s southwest-moving period show 

stronger mid-to-upper level winds northwest of the center, relative to the southeastern 

quadrant, which is consistent with the strongest nearby mid-to-upper level ridging being 

located northwest of the vortex center. These findings are consistent with N18 and Torn et 

al. (2018), who similarly found that Joaquin’s early southwest motion was most sensitive 

to small geopotential height and wind changes in the near-storm environment and less 

sensitive to more distant features, such as the eastern U.S. trough. Like N18, we also find 

that Joaquin’s motion after 0000 UTC 02 Oct may have become sensitive to the position 

of the eastern U.S. trough as it was evolving into a closed low, having by now moved closer 

to the storm.  
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   Unlike N18, however, we found that Joaquin’s southwest motion could also be 

dependent on the vortex having sufficient depth. In part, these differences may stem from 

N18 finding the environmental flow uncertainty to be maximized in the lower troposphere, 

near 700 hPa, which should affect the motion of both deep and shallow TCs. However, we 

found vortex depth to be an important factor only for the “extreme case” forecasts that 

initialized Joaquin as a weak tropical storm and failed to intensify it - namely, the 1200 

UTC 29 Sep cycle GFS and the PERT-V sensitivity test. GD13 similarly found insufficient 

vortex depth to be a significant contributor to Advanced Hurricane WRF (AHW) track 

errors during the early development of Hurricane Earl (2010). Our findings suggest that 

model misrepresentation of vortex depth may be an important track error source for some 

TC cases, especially for weaker, developing storms that are embedded in vertically sheared 

environmental flows. We also showed how Joaquin’s vortex contraction and tilt reduction 

over the 0600 UTC 29 Sep – 0000 UTC 30 Sep period may have helped to draw the low-

level center southward.  

Despite marked improvements in TC track forecasting over the past few decades, 

operational model forecasts can still contain large track errors, particularly for 

climatologically unusual cases (Zhang et al. 2018). Assimilating additional data over ocean 

regions, to include both satellite radiances and aircraft dropsondes sampling the synoptic 

environment, together with improved model physics, may lead to better model 

representation of large-scale flow features (Brennan and Majumdar 2011; GD13; Bassill 

2014; Torn et al. 2015,2018). Our results further suggest that for TCs developing in 

vertically sheared environments, improved inner-core sampling by means of cloudy 

radiances and aircraft reconnaissance missions may reduce track forecast errors by 
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improving the model estimate of vortex depth in the initial conditions. Given that vortex 

depth is generally correlated with intensity, improvements in track forecasting may be 

partly contingent on more accurate intensity forecasts for these cases.  
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Chapter 3. Data Assimilation Methods Used for Generating the 
Hurricane Joaquin (2015) Control and Sensitivity Simulations  

 
 
3.1 Cycling strategy 
 

A 30-h WRF spinup cycle, herein the WRFDA-hybrid cycle, assimilates 

observations every 3 h using WRF Data Assimilation (WRFDA) V3.9 hybrid 3DVAR 

software (Wang et al. 2008a,b) with the purpose of generating accurate and dynamically 

balanced initial conditions for the Hurricane Joaquin (2015) Control (CTL) and sensitivity 

simulations described in chapter 2 (Fig. 3.1). WRF is run at 27/9/3-km resolution with the 

CTL 2-way nesting configuration (Fig. 2.2) and physics schemes, except that the Davis et 

al. (2008) SST parameterization is turned off. The WRFDA-hybrid cycle begins with a 3-

h WRF forecast initialized from the 0000 UTC 28 Sep 1°-FNL, which becomes the 

background for the first hybrid analysis. The cycle continues, with hybrid analyses 

initializing 3-h WRF simulations. Data assimilation is performed separately on the 27 and 

9-km domains. The 3-km nest is interpolated from the 9-km analyses, except for 1800 and 

2100 UTC 28 Sep, when inner-core reconnaissance flight data are available, and data 

assimilation is performed on the 3-km background. To filter out noisy and potentially 

unbalanced features from the analyses, digital filter initialization (DFI, Lynch and Huang 

1992) with a twice-DFI scheme and a Dolph Filter (Lynch 1997) is applied at the beginning 

of all cycled WRF runs, using 2-h backward and forward integrations. The DFI-processed 

0600 UTC 29 Sep analysis is used to initialize CTL. 
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Figure 3.1 Schematic summarizing the cycled data assimilation methodology used for 
generating the CTL analysis.  
 

  An 80-member 27/9-km WRF forecast ensemble, herein the WRF-DART cycle 

(Fig. 3.1), provides ensemble-based “errors of the day” to the hybrid 3DVAR algorithm. 

The ensemble initial conditions are seeded at 0000 UTC 25 Sep by adding random 

Gaussian draws taken from the 27-km domain static “CV5” background error field to the 

1°-FNL (Torn et al. 2006). Lateral boundary conditions for the 27-km domain are perturbed 

similarly. Following an initial 6-h WRF ensemble forecast6, observations are assimilated 

every 3 h using the Data Assimilation Research Testbed (DART) Ensemble Adjustment 

Kalman Filter (EAKF; Anderson 2001, 2009). The WRF-DART cycle is initialized three 

days prior to the first hybrid analysis so that the system has sufficient time to develop 

spread representative of the flow-dependent errors. 

																																																								
6	Except for the omission of the 3-km nest, WRF model settings are the same as those for 
the WRFDA-hybrid cycle. DFI is also not used for WRF-DART model advances.  
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3.2 Data assimilation algorithms 

The WRFDA-hybrid 3DVAR algorithm can perhaps most intuitively be understood 

when the variational cost function J, which is minimized to solve for the analysis increment 

𝐱H,  is expressed in the form derived by Wang et al. (2007):  

     																													𝐽 𝐱H = L
M
𝐱H𝐓 L

�m
𝐁 + L

��
𝐏𝒆°𝐒

�L
𝐱H 

																																		+ L
M
𝐲|� − 𝐇𝐱H

�
𝐑�L 𝐲|� − 𝐇𝐱H ,  (3.1) 

 
where the static background error covariance (BEC) B, observation error covariance R, 

innovation vector 𝐲|� = 	𝐲|	–𝐻 𝐱� 	, and linear observation operator H are all familiar 

terms from the ordinary 3DVAR cost function. The innovation is the difference between 

the observations 	𝐲|	 and the background forecast 𝐱� transformed to observation space 

using the nonlinear observation operator H. Equation (3.1) differs from ordinary 3DVAR 

only in the first right-hand side term, were the static BEC is replaced by the expression in 

parentheses, which is a linear combination of static and ensemble BEC contributions, 

controlled by the weighting factors 𝛽L and 𝛽M, where  

           		 L
�m
+	 L

��
 = 1.                                   (3.2) 

For k = 1,…, K ensemble members, the kth ensemble forecast 𝐱� normalized perturbation 

about the mean 𝐱 is   

      𝐱�"  = 𝐱��𝐱
��L

 ,                                  (3.3) 

and the ensemble covariance Pe  becomes 

     𝐏" = 𝐱�"	 𝐱�" ��
�sL .                      (3.4) 
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The ensemble, or “errors of the day” BEC in (3.1), is the Schur product of Pe and the 

localization matrix S. The latter smoothly spreads the ensemble covariances through 

model space while at the same time limiting sampling error by driving the covariances 

towards zero at large distances, making use of a recursive filter with a Gaussian response 

function. 

Wang et al. 2008a describe the WRFDA hybrid 3DVAR algorithm in detail. Here, 

equal weighting between the static and ensemble BECs is used, and the horizontal length 

scale of the recursive filter used to localize the ensemble BECs in model space is set to 750 

km, which corresponds to an e-folding distance of ~ 2100 km. Two “outer loops” are used 

to minimize the Eq. (3.1) cost function (Schwartz et al. 2013). When assimilating 

observations into the 3-km domain, ensemble perturbations are interpolated from the 9-km 

WRF-DART forecast using the WRFDA hybrid “dual resolution” algorithm (Schwartz et 

al. 2015). The “NMC method” (Parrish and Derber 1992) is used to generate the static 

BECs (CV5 option) from differences in 12 and 24-h WRF forecasts verifying at the same 

time, gathered over a 40-day period prior to the start of the WRFDA-hybrid cycle. 

 The DART EAKF ingests observations with the purpose of adjusting the analysis 

ensemble mean toward the truth while maintaining a spread representative of the flow-

dependent errors. The EAKF is one commonly used flavor of Ensemble Kalman Filter 

(EnKF), a more general class of algorithms that are all fundamentally based on the 

following equations: 

             𝒙¡ 𝑡 = 	𝒙¢ 𝑡 + 	𝐊 𝒚𝒐	–𝐻𝒙¢ 𝑡 ,           (3.5) 
 
                                   𝐊 =	𝐏¢𝐻Y(𝐻𝐏¢𝐻Y + 𝐑)�L,                     (3.6) 
 
              𝒙¢ 𝑡 + 1 = 𝑀[𝒙¡ 𝑡 ].          (3.7) 
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Equation (3.5) adjusts a forecast vector 𝒙¢ 𝑡  at time t using the Kalman gain matrix K 

multiplied by the innovation vector to generate the analysis 𝒙¡ 𝑡 . Although Eqs. (3.5)-

(3.7) can be applied to a single forecast, here we let 𝒙¢ 𝑡  and 𝒙¡ 𝑡  denote a forecast and 

analysis ensemble respectively. As in Eq. (3.1), the innovation vector is the difference 

between the observations and 𝒙¢ 𝑡 , transformed to observation space using the nonlinear 

observation operator H. Equation (3.6) shows that K  is computed from the background 

error covariance 𝐏¢ and the observation error covariance R; EnKFs compute 𝐏¢ through 

covariances in ensemble perturbations about the mean. Thus, Eqs. (3.5) and (3.6) show that 

observations will have a higher impact on state variables that have larger covariances with 

the observed state variables in the background forecast. The analysis is subsequently 

advanced to time t + 1 using the nonlinear model integration M. The various types of EnKFs 

differ in how they approximate K and apply Eqs. (3.5)-(3.7) to an ensemble of forecasts 

(Houtekamer and Zhang 2016).  

The DART EAKF approximates Eqs. (3.5) and (3.6) in a two-step process, 

assimilating each observation one at a time or in small batches. In the first step, the 

observation operator H is applied to every ensemble member to generate a prior 

observation ensemble for a given observation T that has an observed value To. The prior 

observation ensemble is then fit to a Gaussian probability estimate for T given the state of 

the system in the background forecast. Next, the prior observation ensemble distribution is 

transformed into the posterior observation ensemble Gaussian estimate for T that 

minimizes the combined background forecast uncertainty and observation error, the latter 

accounting for both instrument errors and errors stemming from representing the 

observations in model space. Larger prior ensemble spread and smaller observation errors 
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both act to adjust the posterior estimate of T closer to the observed value To. In the second 

step, unobserved state variables for the ensemble members are adjusted by linear regression 

against the posterior observation ensemble. Two important limitations in this algorithm are 

worth noting. First, the analysis can be altered simply by changing the order of observation 

assimilation. Second, errors in the prior ensemble and observations are both assumed to be 

Gaussian. 

We employ several strategies to prevent “filter divergence” whereby the forecast 

ensemble spread collapses, causing the observations to have little influence and the state 

to evolve away from the truth.	For brevity, we mention only key settings, which follow 

previous successful studies (Torn 2010; Cavallo et al. 2013; Wu et al. 2014, 2015). To 

compensate for spread deficiency, which can result from a finite-sized ensemble not 

capturing model error and other sources of uncertainty, inflation (with an initial standard 

deviation of 0.6) is applied to the background ensembles prior to assimilation and allowed 

to vary in time and space (Anderson 2009). Densely observed regions evolve higher 

inflation values. To prevent unnecessarily high inflation for later periods, should the local 

observation density decrease, the inflation fields are damped by 10% every cycle. 

Horizontal and vertical localization is applied, which limits the spatial influence that 

observations have on the model state, thereby mitigating analysis degradations caused by 

distant spurious correlations. We use a bell-shaped polynomial correlation function 

(Gaspari and Cohn 1999) that reaches zero 1910 km in the horizontal and 10 km in the 

vertical around each observation. The size of this ellipsoid is reduced if necessary by 

adaptive localization (Torn 2010) to limit the number of observations contained within it 

to approximately 1600.  
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3.3 Observations 

Table 3.1 summarizes the observations assimilated into the WRF-DART and 

WRFDA-hybrid cycles. They are assumed valid at the analysis times and taken from +/- 

1.5-h time windows, except for the C-130 flight-level winds and temperature, which are 

taken from +/- 30-min windows. Conventional observations include radiosondes, 

atmospheric motion vectors (AMVs), and aircraft reports. The AMV winds are derived by 

tracking moving cloud and water vapor features in geostationary satellite imagery. The 

University of Wisconsin-Madison Cooperative Institute for Meteorological Satellite 

Studies (UW-CIMMS) AMVs are a high spatial resolution hourly dataset, available for the 

period beginning at 0000 UTC 28 Sep, whereas the NOAA-NESDIS AMVs are processed 

for global analyses and have a coarser resolution. Velden et al. (2017) describe the quality 

control algorithms used in processing the UW-CIMMS AMVs, which include the removal 

of all AMVs in the 400-700 hPa layer, where the vector height assignments have been 

found to be less accurate. To minimize uncorrelated observation errors, not accounted for 

in the data assimilation, all AMVs are averaged, or “superobbed,” over 81-km wide and 

25-hPa deep boxes. The “obserr.txt” table supplied with the WRFDA V3.9.1 software 

provides most observation errors. AMV errors are taken from Velden et al. (2017). C-130 

flight-level wind and temperature errors are set to 2 m s-1 and 0.5 K, respectively, following 

Aksoy et al. (2013). National Hurricane Center (NHC) Advisory position and Pmin errors 

are set to 0.2 deg and 3 hPa, respectively. 
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Table 3.1 Observations assimilated into the WRFDA-hybrid and WRF-DART cycles. 

 

The WRFDA-hybrid cycle assimilates Advanced Microwave Sounding Unit-A 

(AMSU-A) radiances from the NOAA-15, NOAA-18, NOAA-19, and METOP-2 

satellites. Only the temperature-sensitive channels 5, 6, and 7 are assimilated. These 

channels are not sensitive to surface emissivity and do not heavily sample regions above 

the model top. The WRFDA Variational Bias Correction (VARBC) routines are used to 

correct for biases in the quality-controlled radiances; they add a correction term to the 

radiance forward operator consisting of a constant “offset” added to a linear combination 

of seven channel-dependent predictors, which are related to field variables and the scan 

geometry, all multiplied by coefficients. The predictor coefficients are updated every cycle 

as part of the cost function minimization. To spin up the coefficients, WRFDA is run for a 

40-day period prior to 0000 UTC 28 Sep in an “offline mode,” following Liu et al. (2012), 

with the NCEP 1°-FNL used as the reference field.  

	 	 	 	 Table 1. Assimilated observations 
  Platform         Observation type      Assimilated in       Assimilated in                          Notes 
                                                            DART EAKF      WRFDA-hybrid  
   

Radiosondes           u, v, T, q                       yes                          yes       q assimilated as relative humidity in WRFDA-  
                                                                                                                hybrid, specific humidity in DART EAKF 
                   
Satellite AMVs          u,v                            yes                           yes       superobbed into 81 km x 81 km x 25 hPa                               
                                                                                                                boxes  
 
Aircraft                     u,v,T                          yes                           yes       superobbed into 81 km x 81 km x 25 hPa     
                                                                                                                boxes 
 
U.S. Air Force          u,v,T                          yes                           yes        28 Sep 1800 UTC and 2100 UTC analyses 
C-130 Recon                                                                                             only; for DART EAKF, thinned to 18-km        
Flight-level data                                                                                       along-track intervals, for WRFDA hybrid, 
                                                                                                                  thinned to 6-km along-track intervals 
 
AMSU-A              radiance                                     no                            yes        thinned to 108 km, 36 km, and 18-km mesh         
                                                                                                                 for WRF domains 1, 2, and 3, respectively 
 
Bogus                       q                                no                            yes        assimilated as relative humidity over the 
                                                                                                                 1000 – 700 hPa layer in 25-hPa intervals, 
                                                                                                                 in concentric arcs S of storm center 
                                                                     
NHC Advisory        -                                 yes                           no          Data are linearly interpolated in time to 3-h                                                                                                                                                                                                            
lat, lon, Pmin                                                                                              analyses between 6-h advisories  
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We examine the impact of assimilating AMSU-A radiances on the 0600 UTC 29 

Sep CTL analysis by re-running the 30-h WRFDA-hybrid cycle with these observations 

removed. Figure 3.2 shows that the resulting NORADIANCES analysis differs most 

significantly from the CTL analysis in terms of the former having higher mid-to-upper 

level geopotential heights northeast of Joaquin. This is not too surprising, given that (i) 

maritime regions are less well sampled by conventional observations and that (ii) the 

AMSU-A channel 5-7 weighting functions peak in the middle and upper troposphere. The 

upper-level low centered near 37˚ N, 58˚ W is not well captured by the NORADIANCES 

analysis, as evidenced by the fact that the closed 7540-m 400-hPa geopotential height 

contour that delineates this feature in the 0600 UTC 29 Sep 0.25°-FNL is missing in 

NORADIANCES (cf. 2.12, 3.2). AMSU-A radiance assimilation lowers heights in its 

vicinity (Fig. 3.2), although this low is still too weak in the CTL analysis relative to the 

0600 UTC 29 Sep 0.25°-FNL (Fig. 2.12). Compared to NONUDGE, a 48-h WRF forecast 

run from the NORADIANCES analysis with nudging turned off but all other model settings 

identical to CTL shows (i) an initialized vortex positioned further north and (ii) even less 

southward motion (Fig. 3.3), and its intensity forecast resembles that of NONUDGE (not 

shown). 
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Figure 3.2 (a) Geopotential height differences between the 0600 UTC 29 Sep 
NORADIANCES and CTL analyses (NORADIANCES - CTL), computed at each pressure 
level and then averaged over the 850-600 hPa layer (shaded, m) with 700-hPa 
NORADIANCES geopotential height (contoured, m) and horizontal flow vectors (m s-1). 
(b) As in (a) but for geopotential height differences averaged over the 600-250 hPa layer, 
with 400-hPa NORADIANCES geopotential height and winds. Black triangle denotes the 
0600 UTC 29 Sep best-track Joaquin position. 
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Figure 3.3 Hurricane Joaquin (2015) track for a 48-h WRF simulation run at 1-km 
resolution from the NORADIANCES analysis (red line), superimposed over 96-h CTL and 
NONUDGE track forecasts (black and green lines, respectively). Circles denote initial 
positions and squares denote 0000 UTC positions for all subsequent days.  

 
Except for flight-level wind and temperature observations from one C-130 mission, 

inner-core observations are not available prior to the CTL initialization time. Previous 

studies have used bogus moisture soundings to enhance the background relative humidity 

near a developing TC (Hsiao et al. 2010; Schwartz et al. 2013, 2015). Microwave satellite 

observations (not shown) indicate that deep convection is displaced south of the surface 

low center during the WRFDA-hybrid cycling period. To help focus simulated convection 

in that region, bogus moisture soundings are seeded in concentric semicircles south of the 
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NHC best-track center extending out to 6 degrees of latitude. Figure 2.13 shows the same 

sounding configuration, except over a full 360-degree circle. Each sounding increases 

relative humidity in the 1000-700 hPa layer by a factor of 1.17 above the background.  

  
3.4 Validation of the WRF-DART ensemble 

 
As discussed in section 3.2, cycled EnKF systems are vulnerable to filter 

divergence, whereby the mean evolves away from the truth and the spread collapses. 

Houtekamer et al. (2005) showed that a properly calibrated prior ensemble mean root mean 

square error (RMSE), evaluated against observations, should approximately equal the total 

spread, defined as the square root of the sum of the observation error and the spread in the 

prior ensemble representation the observation. It is important to perform this comparison 

using the prior, or background, ensemble forecasts because the EnKF can reject any 

observations that are too far removed from the ensemble mean estimate. For this DART 

configuration, observations are passed through an “outlier check” prior to assimilation, 

which rejects any observation that differs from the prior ensemble mean by more than three 

times the square root of the total spread. Thus, it is possible for an analysis ensemble mean 

that has drifted far from the true atmospheric state to have a low RMSE against the small 

fraction of observations that were actually assimilated. Since the ensemble covariances in 

WRFDA-hybrid are taken from the WRF-DART ensemble forecast spread, it is highly 

desirable that this spread is representative of the “errors of the day.”  

																																																								
7	Larger factors	were tested and found to over-intensify the storm during the WRFDA-
hybrid Cycle. 
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Figure 3.4 Vertical profiles comparing the prior (i.e., background) and posterior (i.e., 
analysis) WRF-DART ensemble mean RMSE (black) with the total spread (red, see text 
for definition). These statistics are computed over the WRF 9-km domain for radiosonde 
(a) u-winds, (b) v-winds, (c) temperature, and (d) specific humidity. Solid and dashed lines 
represent the prior and posterior statistics, respectively. Also shown for each height bin are 
the number of observations processed (open circles) and number of observations that were 
assimilated (asterisks). The abscissa units are m s-1 for (a) and (b), K for (c), and g kg-1 for 
(d). 
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Here we show vertical profiles of prior and posterior RMSE and total spread, 

binned over height and over the 0000 UTC 28 Sep – 1200 UTC 29 Sep period, for 

radiosondes (Figure 3.4) and AMVs (Figure 3.5). For the radiosonde horizontal winds, the 

ensemble is somewhat underdispersive for most heights, with the ratio of the prior total 

spread to the prior mean RMSE being around 0.8 – 0.9 (Figs. 3.4a,b). Although this fit 

appears to be reasonable, when comparing against similar observation space diagnostics 

shown in Wang et al. (2008b) and Torn and Hakim (2008), Schwartz et al. (2015) showed 

a somewhat better fit between radiosonde u and v RMSE and total spread for their WRF-

DART ensemble run at 15-km resolution (their Fig. 7). Our RMSE-to-total spread fit could 

have possibly been improved by tuning the radiosonde u and v observation errors, but that 

was not done here. The RMSE-to-total spread ratio is close to 1 for temperature at all 

heights and for specific humidity above 850 hPa (Figs. 3.4c,d). The prior ensemble mean 

RMSEs shown for u,v,t, and q are comparable to those shown in Schwartz et al. (2015). 

For these four observation types, at least 80 percent of available observations survive the 

rejection outlier test, with the exception of the lowest height bin around 1000 hPa. It is not 

surprising that the rejection rate is higher for the boundary layer, given the large vertical 

temperature and wind gradients that exist here.  
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Figure 3.5 As in Fig. 3.4, but for AMV (a) u-winds and (b) v-winds. 
 

The ensemble is well calibrated with respect to the AMVs (Figs. 3.5a,b), with a 

rejection rate < 3% at all heights and strong agreement between prior mean RMSE and 

total spread. This is an encouraging result, given that the AMVs provide the bulk of the 

EAKF observations over the ocean regions surrounding Joaquin. Figure 3.5 also shows that 

the AMV vertical distribution is highly bimodal, with large numbers in the upper levels 

(150-300 hPa) and lower levels (700-925 hPa). These regions have cloud features that can 

be more reliably tracked, as discussed in section 3.3.   
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Chapter 4. A Three-dimensional Trajectory Model with Advection 
Correction for Tropical Cyclones: Algorithm Description and Tests for 

Accuracy  
 

Material presented in this chapter has been published in Monthly Weather Review as 
Miller and Zhang (2019b) 

 
4.1 Introduction 
 

   A Lagrangian, or parcel-following, analysis is a powerful tool for studying a wide 

variety of atmospheric processes. Applications include the tracking of ash clouds following 

volcanic eruptions (Kristiansen et al. 2012), studying ozone and water vapor exchange 

between the troposphere and stratosphere (Homeyer et al. 2011), pollutant transport and 

dispersion analysis (Stohl and Kromp-Kolb 1994; Stohl 1996; Brankov et al. 1998; Baker 

2010), and investigating sources of updraft buoyancy in tropical maritime convection 

(Fierro et al. 2009, 2012). Some atmospheric models have a built-in capability to compute 

forward parcel trajectories during run-time with the same computational timestep used for 

integrating the prognostic governing equations (Fierro et al. 2009, 2012; Dahl et al. 2012). 

Nevertheless, for many problems, or if backward trajectories are needed, the four-

dimensional (4D) gridded winds must be supplied by analyses or offline model runs. A 

fluid parcel may be uniquely identified by its position x0 at any initial, or “seed” time, t0. 

The parcel position x(x0,t) at any time tf  may be found by integrating   

    Dx/Dt = u(x,t)                                                      (4.1) 

using the Lagrangian derivative with respect to time (D/Dt) over the time interval [t0 , tf], 

where u(x,t) is the parcel velocity. Since parcels are free to travel between the grid vertices, 

u(x,t) is obtained by interpolating the Eulerian gridded winds to the parcel position at every 

computational timestep. A sub-class of trajectory models, commonly referred to as 
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Lagrangian dispersion models, account for parameterized subgrid scales of motion when 

solving for u(x,t); however, this study focuses on trajectory applications where the 

unresolved motion scales may be neglected. 

Model output temporal resolution is often limited by disk storage constraints; for 

these cases, Eq. (4.1) is typically integrated using a considerably smaller timestep to 

minimize numerical truncation errors. Temporal interpolation of the gridded wind field to 

the computational times has been shown to be a significant trajectory error source (Kuo et 

al. 1985; Rössler et al. 1992; Stohl et al. 1995; Dahl et al. 2012).8 For example, Dahl et al. 

(2012) simulated a supercell thunderstorm using the Bryan Cloud Model 1 (CM1) and 

generated forward “truth” trajectories during model run-time that passed through the near-

surface mesocyclone. They ran backward trajectories from the forward trajectory end-

points using varying model output time intervals and found that applying linear time 

interpolation (LI) to the confluent, nonlinearly evolving flow resulted in fictitious low-

level inflow trajectories for the temporally coarser input data. Trajectory models have 

traditionally used LI to estimate u(x,t) from gridded input (Bowman et al. 2013). This 

method should be well suited for any velocity field with an approximately linear evolution 

between sampling times.  

     Shapiro et al. (2015, hereafter S15) tested an alternative time interpolation technique 

using advection correction (AC) on two-dimensional (2D) trajectories run from a high-

resolution (30-m) CM1 supercell simulation. AC algorithms have been extensively used in 

																																																								
8	Other sources of trajectory error include the spatial interpolation of the gridded winds, 
numerical truncation errors accumulated from integrating Eq. (4.1), and inaccuracies in 
the gridded input winds themselves.   
	



	

	 	 	85	

Doppler radar data processing when an analysis reflectivity or wind field must be 

constructed from nonsimultaneous beam scan observations; they essentially re-define the 

observations in a reference frame moving with the pattern translation velocity (Gal-Chen 

1982, hereafter GC82; Zhang and Gal-Chen 1996; Dowell and Bluestein 2002; Shapiro et 

al. 2010). Let us now illustrate, in a simple example, how AC can be applied to the time 

interpolation of the vertical velocity field; this concept can be extended to any scalar or 

Cartesian velocity vector component translating through three-dimensional (3D) space at 

constant velocity. Consider a wavelike updraft pattern w(x, t) moving in the positive-x 

direction with a speed U (m s-1), as shown in Fig. 4.1; w is perfectly resolved in space but 

not in time. Suppose that w can be sampled at data input times t = t0 and t = t0 + Δt, and we 

wish to find w(p, t0 + Δt/2) for x = p. Although the updraft peak passes p at time t = t0 + 

Δt/2, it is displaced away from p at both data input times, and hence LI between w(p, t0) 

and w(p, t0 + Δt) yields an erroneously low estimate. Let us now re-define p in a reference 

frame moving with velocity U that is co-located with the fixed frame only for t = t0 + Δt/2. 

For times t = t0 and t = t0 + Δt, the  positions of p in the fixed reference frame, pt0 and pt0+Δt 

respectively, are 

    pt0 = p - UΔt/2    (4.2a) 

    pt0+Δt = p + UΔt/2.   (4.2b) 

For this simple case, Dw/Dt = 0, and therefore w(p, t0 + Δt/2) is exactly equivalent to both 

w(pt0, t0) and w(pt0+∆t, t0 + Δt). On the other hand, if the waveform were to grow or decay, 

LI between w(pt0, t0) and w(pt0+∆t, t0 + Δt) could still improve the estimate of w(p, t0 + Δt/2) 

compared to LI from x = p, provided that the waveform retains its general shape. Herein 
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LI will refer to linear time interpolation in the traditional sense, i.e., with no advection 

correction of the fixed frame coordinate position. 

 

Figure 4.1 Illustration of the advection correction principle for an updraft waveform w(x,t)  translating in the 
positive-x direction with velocity U. For x = p, the waveform amplitude at time t = t0 + Dt / 2 is estimated by 
temporal interpolation between data input times t = t0 and t = t0 + Dt. Simple linear interpolation (LI) in time 
from x = p in the fixed reference frame substantially underestimates w, whereas advection correction (AC) 
time interpolation from x = p¢ in the reference frame translating with velocity U yields the true w amplitude. 
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S15 found that advection-correcting the 2D wind field improved the accuracy of 

most trajectories in their samples, relative to LI. However, they cautioned that defining the 

pattern translation velocities for realistic atmospheric flows could be a nontrivial task. 

According to the “frozen turbulence hypothesis” (Taylor 1938), a two-dimensional fluid 

vector field (u, v) may be idealized in terms of a complex turbulent pattern (u´, v´) that 

retains its shape over sufficiently short time intervals while translating with an “advective” 

flow vector (U, V). Recognizing that many atmospheric features have advective flow 

patterns with spatiotemporal variation, S15 divided their model output domain into a 

checkerboard pattern of non-overlapping “subdomains” and defined U and V for each 

subdomain and model output time interval. They tested two methods for determining the 

advective flows: (i) averaging the model-output winds over the subdomain, and (ii) using 

an “iterative Gal-Chen procedure” developed by GC82 that yielded an advection-corrected 

u field with the smallest departure from Lagrangian conservation following U and V. The 

latter method minimized a cost function that penalized deviations from the frozen 

turbulence constraint, yielding linear equations for U and V in terms of local u gradients 

and time tendencies integrated over the subdomain. AC using U and V determined by this 

method yielded the most accurate trajectories. S15 also showed how the iterative Gal-Chen 

procedure could converge on spurious U and V solutions if the input data temporal 

resolution became too coarse. 

 The major objective of this chapter is to assess the utility of AC in reducing time 

interpolation errors for trajectories computed from TC simulation output. To accomplish 

this, we extend the 2D AC algorithm developed by S15 to 3D. Unlike S15, we define the 

advection velocities in cylindrical coordinates (r,	𝜆, z), where r, 𝜆, and z are radius, 
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azimuthal angle, and height; this is a convenient framework for analyzing the swirling wind 

circulations of TCs. Radial velocity ur = dr/dt and angular velocity ω = d𝜆/dt can be 

expressed as  

ur = Ur + ur´                              (4.3a) 

ω = Ω + ω´,                                            (4.3b) 

where capital letters and primes denote advective and perturbation components, 

respectively. Here, advective flows are defined over non-overlapping subdomains on the 

computational grid for every model output time interval. We evaluate how AC impacts 

trajectory accuracy with Ur and Ω determined by either (i) a gridpoint spatiotemporal 

average over each subdomain or (ii) a modified version of the S15 iterative Gal-Chen 

procedure that solves for the advective flows Ur and Ω based on the absolute angular 

momentum (AAM) conservation principle. For axisymmetric TCs, it is well established 

that AAM, defined in terms of radius r measured from the vortex center, tangential wind 

vt = ωr, and Coriolis parameter f   

                 AAM = r(vt + fr/2),                 (4.4) 

is nearly conserved following the flow above the maritime boundary layer (MBL), where 

friction and diffusion may be neglected (Zhang et al. 2001; Montgomery and Smith 2014; 

Qin et al. 2018). Here we invoke the additional assumption that the pressure torque 𝜕𝑝/𝜕𝜆 

(Zhang et al. 2001) is small enough such that AAM can be treated as a “quasi-conserved” 

variable following 3D flows over sufficiently short time intervals:  
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We will test this algorithm on trajectories run from Weather Research and Forecasting - 

Advanced Research core (WRF-ARW) model simulations of Hurricanes Joaquin (2015) 

and Wilma (2005). 

    TC simulations offer a promising testbed for trajectory AC algorithms. Advances in 

observing systems and high-resolution modeling over the past twenty years have revealed 

that TC eyewall swirling winds have a rich and complex kinematic structure, with various 

types of embedded flow disturbances, even for mature, relatively axisymmetric cases. 

Outbreaks of deep convection, known as hot towers or convective bursts (CBs), have been 

shown to precede or accompany TC intensification episodes (Heymsfield et al. 2001; 

Guimond et al. 2010; Chen and Zhang 2013; Rogers et al. 2015). A few previous studies 

have examined TC dynamical processes in a Lagrangian framework. Perhaps Liu et al. 

(1999) was the first to show the long residence of air parcels in the eye of their MM5-

simulated Hurricane Andrew (1992) through forward and backward trajectories that were 

calculated by interpolating hourly model outputs into 3-min intervals. Using trajectories 

run from his MM5-simulated Hurricane Bob (1991) outputs at 2-min intervals, Braun 

(2002) showed that perturbation pressure gradient forces lifted air parcels above the 

eyewall MBL, with the parcels acquiring thermal buoyancy at higher levels. Cram et al. 

(2007) studied mixing between the eyewall, eye, and outer regions using trajectories 

computed from a Hurricane Bonnie (1998) MM5 simulation output at 3-min resolution. 

Their analysis revealed that while high-equivalent potential temperature (𝜃") air parcels 

from the low-level eye can be mixed into eyewall updrafts, providing a source of enhanced 

buoyancy, this sheared TC also experienced a ~ 1 K mean eyewall 𝜃"	reduction due to 

extensive mixing of low-𝜃" parcels from outer regions. Stern and Zhang (2013) 
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investigated eye warming in an idealized WRF simulation using backward trajectories 

generated by the RIP4 post-processing software (Stoelinga 2009) from 1-min and 6-min 

output data. They found that once a threshold intensity of ~ 40 m s-1 is reached, stirring 

between the eye and eyewall becomes reduced to the extent that upper-level parcels 

originating near the eye center can remain there for several days and descend 5-10 km, 

even in the presence of moderate VWS. Onderlinde and Nolan (2016) used trajectories 

computed from 1-min resolution WRF idealized simulation output to show how the faster 

(slower) intensification rate of a vertically sheared TC with positive (negative) TC-relative 

environmental helicity resulted in part from a larger (smaller) percentage of boundary layer 

parcels being lofted into deep convective updrafts in upshear quadrants.  

The next section describes the WRF simulation datasets and trajectory 

computation, AC, and trajectory error diagnostics methods. Section 4.3 shows a series of 

analytical trajectory tests to make sure that our codes are free of errors. Sections 4.4 and 

4.5 compare the impacts of AC and LI on trajectories using the Hurricanes Joaquin (2015) 

and Wilma (2005) simulations, respectively. A summary and concluding remarks are given 

in the final section. 

 

4.2 Datasets and methodology 
 
 4.2.1 WRF simulation datasets 

Hurricane Wilma (2005) underwent a record-breaking 18-hour RI episode on 18-

19 Oct that culminated in a peak intensity in terms of PMIN and VMAX of 882 hPa and 82 m 

s-1, respectively (Pasch et al. 2006; Chen et al. 2011). RI is defined herein by the VMAX 

intensification exceeding 15 m s-1 (24 h) -1 (Kaplan and DeMaria 2003). At peak intensity, 
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Wilma (2005) was also the strongest hurricane ever recorded in the Atlantic basin. Wilma 

intensified in the western Caribbean under near-ideal environmental conditions with low 

VWS and high SSTs of 29-30 °C. Chen et al. (2011) simulated this storm using the WRF-

ARW model with a quadruply-nested 27/9/3/1 km two-way interactive grid, 55 vertical 𝜎-

levels, and a 30-hPa model top. The 1-km nest, with (x,y) grid dimensions of 451 ´ 451, 

followed the vortex center. This simulation captured the timing and rate of Wilma’s RI 

reasonably well, and two subsequent papers (Chen and Zhang 2013, hereafter CZ13; Miller 

et al. 2015) showed how extreme upper-level CB updrafts exceeding 15 m s-1 may have 

contributed to Wilma’s RI by directing subsidence warming into the developing upper-

level warm core.    

 Hurricane Joaquin (2015) differed markedly from Wilma (2005), mainly due to its 

looping track that was poorly forecast by most operational models (Berg 2016; Doyle et al. 

2017). The storm began a 60-h RI period on 0600 UTC 29 Sep, with its VMAX increasing 

from 18 to 61 m s-1. High SSTs exceeding 29 ºC appear to have facilitated the RI, despite 

moderate northerly VWS. Microwave satellite observations showed an asymmetric inner-

core structure throughout Joaquin’s early-to-middle RI period. Following RI, Joaquin 

slowly moved westward through the Bahamas, maintaining its intensity. Around 1800 

UTC 02 Oct, soon after beginning its acceleration to the northeast, Joaquin began an 18-h 

re-intensification, with its VMAX increasing from 57 to 69 m s-1. Thereafter the storm 

weakened as it encountered lowering SSTs and increasing VWS. Miller and Zhang (2019a) 

simulated Joaquin with WRF-ARW using a 27/9/3/1 km two-way interactive grid, 55 

vertical 𝜎-levels, and a 30-hPa model top. The innermost domain, with (x,y) dimensions 

of  601 ´ 601, followed the vortex center. WRF is initialized at RI onset with initial 
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conditions generated from cycling hybrid data assimilation, and the outer three domains 

are nudged with a large-scale analysis. Results show that the model reproduces the RI rate 

and asymmetric inner-core structures reasonably well. 

 4.2.2 General procedures for trajectory computations 

Aside from the AC algorithms, basic numerical elements of our trajectory 

calculations follow previous studies (Cram et al. 2007; Dahl et al. 2012; S15). The 1-km 

WRF moving nest from the Wilma (2005) and Joaquin (2015) simulations supplies the 

input data for all numerically-simulated data trajectories. ARWpost9 software is used for 

de-staggering and vertically interpolating WRF-output winds and desired scalars from their 

native Mercator projection C-grid to a computational A-grid, where scalars and all velocity 

components are defined at the vertices. The computational grid has a constant horizontal 

grid cell length ∆x = ∆y = 1000 m and a vertical resolution ∆z set to 250-m (50-m) above 

(below) z=1 km. Model-output 10-m horizontal winds and w = 0 populate the ground level. 

Lateral boundaries are set to the edges of the de-staggered WRF grid, and the top boundary 

is set to 20 km. Map scale factors mx and my relate Dx and Dy to their corresponding 

distances on the spherical Earth surface (Skamarock et al. 2008):  

     mx = ∆­
?® ¯°± ² |´©|

                                 (4.6a)            

     my = ∆µ
?®∆²

 ,                                          (4.6b) 

																																																								
9 Documentation is for the ARWpost postprocessing package is available at 
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.9/users_guide_chap9.htm#_
ARWpost_3.	
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where f and l are the latitude and longitude in radians, respectively, and Re is the mean 

radius of the Earth. To correct for map distortion effects, the WRF-output u and v winds 

are transformed to the grid-relative winds  

              ugrid = u(mx)                         (4.7a) 

               vgrid = v(my).              (4.7b) 

Eq. (4.1) is integrated using a second order Runge-Kutta (RK2) scheme (Press et al. 1992) 

with a 10-s computational time step. The parcel velocity at computational times is 

estimated from gridded winds at the nearest input times using either LI or AC in time and 

trilinear interpolation in space. Any parcel arriving at the grid top or lateral boundaries is 

flagged as having left the domain and its trajectory integration is terminated. 

For the two numerically-simulated data cases, an additional complication arises 

from the fact that the WRF vortex-following nest translates horizontally by several 

gridpoints between some output times. Prior to trajectory runtime, the grid translation 

vectors for the x- and y-directions, xTRANS and yTRANS respectively, are determined for every 

output time interval using the WRF-output latitude and longitude and map scale factors10; 

for output intervals where the domain remains stationary, xTRANS and yTRANS are set to zero. 

These vectors have units of (number of gridpoints) ´ ∆x, with a positive (negative) sign for 

northward and eastward (southward and westward) domain shifts, in the time direction of 

model integration. Trajectory calculations are kept in an Earth-relative framework by 

adding a correction term to Eq. (4.1) that opposes the effect of domain translation on parcel 

																																																								
10	For both the Wilma (2005) and Joaquin (2015) trajectory integration periods, the 1-km 
domain moved in increments of 3 grid cells in one or both horizontal directions. This 
distance corresponds to 1 grid length in the parent nest.	
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movement. For the ith RK2 iteration, equations for parcel displacement in the respective x- 

and y-directions, 𝛿xi and 𝛿yi, are 

 𝛿xi = ugrid,i 𝛿t - xTRANS
¶·
∆}    (4.8a) 

    𝛿yi = vgrid,i 𝛿t - yTRANS
¶·
∆}

,    (4.8b) 

where ugrid,i  (vgrid,i) are the local u-winds (v-winds), the computational timestep 𝛿t is 

positive (negative) for forward (backward) trajectories, and ∆t is the model output time 

interval.  

 4.2.3 Advection correction overview 

AC of model-output winds and scalars is performed in the horizontal plane, one 

vertical level at a time. Our rationale for defining the horizontal advective flows Ur and Ω 

in cylindrical coordinates is the fact that on the vortex scale, TCs are often analyzed in 

terms of a swirling quasi-axisymmetric horizontal wind or “primary circulation,” and a 

“secondary circulation” consisting of a low-level inflow, eyewall updraft core, and upper-

level outflow (Liu et al. 1999; Montgomery and Smith 2014). Appendix A describes the 

methods used to determine the vortex center, and Figure 4.2a summarizes the AC algorithm 

used for numerically-simulated data cases; modifications for the analytical tests will be 

noted in section 4.3. Prior to running trajectories, the computational grid is divided into 

non-overlapping horizontal subdomains, and Ur and Ω are computed for each subdomain, 

one level at a time, for all model output time intervals ∆t using either the procedure 

described in section 4.2.4 or as subdomain-averaged ur  and ω. Each level is divided into 

concentric annuli that extend outward from the storm center to a specified outer radial 

boundary; these annuli are further subdivided into arcs. Similar subdomain configurations 

are used for the two hurricane cases. For Wilma (Joaquin), 2-km (3-km) wide annuli are 
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subdivided into 24° wide arcs over an AC region extending out to a 60-km (180-km) radius 

beyond the azimuthal mean radius of maximum wind (RMW) over the z = 0-16 km (z = 0-

10 km) layer. Standard LI is used in lieu of AC outside of this region.  

 

Figure 4.2 (a) Block diagram outlining the keys steps of the advection correction 
algorithm. (b) Schematic illustrating advection correction in a cylindrical coordinate 
framework. An updraft element (solid green contours) translates counterclockwise with 
angular velocity W and radially outward with linear velocity Ur between times t = t0 and t 
= t0 + Dt, where its amplitude is known. Assuming W and Ur are also known, the updraft 
amplitude at an arbitrary intermediate time (dashed green contours) can be estimated by 
launching virtual particles (red arrows) to the moving reference frame coordinates (r¢,l¢) 
at times t = t0 and t = t0 + Dt and then linearly interpolating the updraft amplitude in time 
from these two positions. 
 

During trajectory integrations, 3D arrays of Cartesian velocity vector components 

u, v, w and desired scalars are generated at every computational time by temporally 

interpolating model data from the nearest output times. Virtual particles (borrowing S15’s 

terminology) are launched backward and forward in time11 with velocity (-Ur , -Ω) and (Ur 

																																																								
11	Here “time” refers to real, or simulation time, which of course is opposite to the time 
direction for integrating backward trajectories.		

     
divide model grid into subdomains

Advect-Correct AAM for all subdomain
 gridpoints over interval [t0 , t0+Δt]
     

 

recompute (Ur , Ω) using Eqs. 9-10

transform to (r,λ,z)
and locate subdomain

     

 Interpolate Cartesian velocity 
     field (u,v,w) and desired 
 scalars between model-output 
          times t0 and t0+Δt 

    Compute Ur(r,λ,z) and Ω(r,λ,z) for all
         model-output time intervals Δt 

20 iterations

for all gridpoints (x,y,z)

  using subdomain (Ur , Ω)
    launch forward and 
backward virtual particles
   to t0 + Δt , t0  

positions in
the moving reference frame

      linearly interpolate 
        variables in time 
   from t0 + Δt , t0  positions 

   

compute first-guess (Ur , Ω) as subdomain
gridpoint-averaged (ur , ω) at t0 and t0+Δt

     
transform model-output winds to 

               cylindrical coordinates

Prior to Trajectory Integrations  During Trajectory Integrations 
(a) (b)

.

.

.

U
rΔt

Ω
Δt λt0

t0+Δt

rt0

rt0+Δt

*

(U r
 , Ω

)

(-U r
 , -Ω)

λ
11,	12



	

	 	 	96	

, Ω), respectively, from every gridpoint (x, y, z) within the AC subdomain configuration. 

They are free to leave their subdomains, and their “landing positions” are the advection-

corrected coordinates of (x, y, z) at the nearest model output times (Fig. 4.2b). Model output 

data are bilinearly interpolated in space to the landing positions; subsequently, data from 

the landing positions are linearly interpolated in time to yield values for (x, y, z) at the 

computational time. How reasonable, one may ask, is the assumption that perturbations in 

3D flows and thermodynamic variables all maintain their amplitudes as they are advected 

by a mean flow pattern? For a given trajectory, are there cases where AC of w improves 

accuracy, but AC of u and v has negative impacts, and vice versa?  We shall revisit these 

questions in sections 4.4 and 4.5 when we compare numerically-simulated data trajectories 

run using AC of the full Cartesian vector (u, v, w) versus the w-component only. 

 4.2.4 Solving for the subdomain advective flows Ur and Ω 

Our iterative method for obtaining Ur and Ω on each subdomain closely follows the 

“iterative Gal-Chen based procedure” used by S15 to solve for their U and V, but with the 

following modifications: (i) applying the frozen turbulence constraint to AAM instead of 

the u field; (ii) tracking the pattern advection in cylindrical rather than Cartesian 

coordinates; and (iii) adding a vertical advection constraint on the solution. Let us define a 

cost function J that penalizes deviations from AAM conservation following the flow (i.e., 

the condition of D AAM/Dt = 0): 

𝐽 𝑈d, Ω = 	 )>>[
)}

+ 𝑤 )>>[
)/

+ 𝑈d
)>>[
)d

+ Ω )>>[
)©

M
𝑟𝑑𝑟𝑑𝜆𝑑𝑡,       (4.9) 

where the integration extends over all subdomain gridpoints and computational times 

within the model output interval Δt. Ur and Ω are treated as constants over each subdomain. 

Here vertical AAM advection is not explicitly solved for but instead treated as a constant 
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penalty term, parameterized as 𝑤 )>>[
)/

 , with overbars denoting subdomain gridpoint 

averages. Horizontal advections  and Ω that minimize J can be found by setting 𝜕𝐽/𝜕𝑈d 

= 0 and 𝜕𝐽/𝜕Ω = 0 to yield the system of equations 

    AUr + BΩ = D      (4.10a) 

     BUr + CΩ = E,                 (4.10b) 

where  

𝐴 = 	
𝜕𝐴𝐴𝑀
𝜕𝑟

M

𝑟𝑑𝑟𝑑𝜆𝑑𝑡																																			𝐵 = 	
𝜕𝐴𝐴𝑀
𝜕𝑟

𝜕𝐴𝐴𝑀
𝜕𝜆 𝑟𝑑𝑟𝑑𝜆𝑑𝑡 

			𝐶 = 	
𝜕𝐴𝐴𝑀
𝜕𝜆

M

	𝑟𝑑𝑟𝑑𝜆𝑑𝑡					𝐷 = 	−
𝜕𝐴𝐴𝑀
𝜕𝑡 + 𝑤

𝜕𝐴𝐴𝑀
𝜕𝑧

𝜕𝐴𝐴𝑀
𝜕𝑟 𝑟𝑑𝑟𝑑𝜆𝑑𝑡 

					𝐸 = 	−		 )>>[
)}

+ 𝑤 )>>[
)/

)>>[
)©

𝑟𝑑𝑟𝑑𝜆𝑑𝑡,																					       (4.11) 

with all integrations being performed over the subdomain and Δt.    

The equations for Ur and Ω then become 

   𝑈d			 = 	
@]�AE
>@�	E�

   and Ω = >A�E]
>@�	E�

                 (4.12) 

Taking the second derivatives 𝜕MJ/𝜕𝑈d
M,	𝜕MJ/∂ΩM, and 𝜕MJ/𝜕𝑈d𝜕Ω, and invoking the 

second derivative test (Stewart 1999, p. 974) with the Cauchy-Schwarz-Buniakowski 

inequality for integrals (Gradshteyn and Ryzhik 2007, p. 1064) reveals that the solution 

corresponds to a minimum (rather than a maximum) in J.  

Following GC82 and S15, we minimize J iteratively. The procedure is initialized 

with “first-guess” advections, which are set to the subdomain-averaged ur  and ω. They 

define the velocities of the virtual particles used for temporally interpolating the model-

output AAM field to all computational timesteps spanning Δt, as described in the preceding 

subsection. Integrals A-E in Eq. (4.11) are then computed from the advection-corrected 

Ur
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AAM field, and Ur and Ω are updated using Eq. (4.12). This cycle is run for 20 iterations, 

and the code is flagged for instances of nonconvergence, defined here as either ΔUr  ≥ 0.1 

m s-1 or  ΔΩ ≥ 0.001 º s-1 between the 19th and 20th iterations. We forego this iterative 

procedure for the boundary layer (z < 1 km) subdomains where large departures from AAM 

material conservation can be expected due to friction. Here, the advective flows are set to 

the subdomain-averaged first guesses, and they are blended with the z = 1 km Gal-Chen 

advections over the upper portion. 

Unfortunately, solution uniqueness for Ur and Ω cannot be guaranteed. Shapiro et 

al. (2010) and S15 showed how this problem is inherent to any Gal-Chen based procedure 

used in determining advective flows from scalar fields available at discrete input times. 

Although the partial derivatives )>>[
)}

, )>>[
)d

, and )>>[
)©

 are treated as constants when 

differentiating Eq. (4.9) with respect to Ur and Ω, they are actually implicit functions of the 

advective flows, causing Eqs. (4.10a,b) to become nonlinear. Shapiro et al. (2010) showed 

analytically how an infinite family of U solutions could be retrieved by a Gal-Chen based 

procedure for a wave pattern translating with constant velocity Utrue, with the nearest 

spurious solutions moving closer to Utrue as the data input time interval increases. S15 found 

a similar result in their numerically-simulated data tests, although they also found that 

choosing reasonable first-guess U and V values reduced the likelihood of convergence to 

spurious solutions. Solution nonuniqueness will be explored herein in sections 4.3 and 4.4.  

 4.2.5 Calculation of trajectory errors 

Trajectory errors are quantified in terms of position differences from LI “reference 

trajectories” seeded from the same locations and model output times and run using higher-

temporal resolution input data. Horizontal and vertical position errors are defined 
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separately due to the fact that TC vertical length scales are ~O(10 km) smaller than 

horizontal length scales. Borrowing the S15 notation, the horizontal individual 

displacement error (IDEHORIZ) for trajectory i is defined as   

  𝐼𝐷𝐸ZF?q½,	A�=
p

 = 𝑥A�=p − 𝑥?p
M + 𝑦A�=p − 𝑦?p

M
,  (4.13) 

where endpoint position (x, y) is evaluated at a specified integration time and subscripts 

EXP and R denote the experiment, either LI or AC, and reference trajectory, respectively. 

Likewise, we may define a vertical individual displacement error (IDEVERT) 

        𝐼𝐷𝐸GA?Y,A�=p  = |𝑧A�=p  - 𝑧?p |                                                     (4.14) 

at endpoint position z. The impacts of AC are measured in terms of the change in horizontal 

and vertical position errors when a sample of LI trajectories is re-run from the same 

temporal input resolution using AC. Differenced horizontal individual displacement errors 

(∆IDEHORIZ) and vertical individual displacement errors (∆IDEVERT) are defined for 

trajectory i as 

   ∆𝐼𝐷𝐸ZF?q½p
 = 𝐼𝐷𝐸ZF?q½,Bq	

p - 𝐼𝐷𝐸ZF?q½,>@	
p 		                              (4.15) 

                                                               and 

   						∆𝐼𝐷𝐸GA?Yp
 = 𝐼𝐷𝐸GA?Y,Bq	

p - 𝐼𝐷𝐸GA?Y,>@	
p .   (4.16) 

Therefore, a positive (negative) ∆IDEHORIZ indicates reduced (increased) horizontal 

position errors for trajectory i, relative to the reference trajectory, when AC is used in lieu 

of LI; likewise for ∆IDEVERT and vertical position errors. 
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4.3 Analytical tests of trajectory computation 

 Our first analytical test runs LI trajectories on a steady-state flow field in order to 

verify that the RK2 time integration and trilinear interpolation modules are functioning 

properly. The computational grids have (x, y, z) dimensions of 121 × 121 × 41, with 

horizontal and vertical lengths set to Δx = Δy = 1 km and Δz = 0.25 km, respectively. 

Horizontal flows are invariant with height, and they are based on the Taylor-Green (1937) 

vortex initial conditions, in which 

    𝑢(𝑥, 𝑦) = 𝑉g¡+sin	
Ã+
B
cos Ã-

B
   (4.17) 

and 

    𝑣(𝑥, 𝑦) = −𝑉g¡+ cos
Ã+
B
sin Ã-

B
,   (4.18) 

where Vmax = 100 m s-1 and L = 120 km. Horizontal components of this inviscid and 

incompressible flow field can be described by a streamfunction 𝜓, where u = 𝜕𝜓/𝜕𝑦 and 

v = −𝜕𝜓/𝜕𝑥: 

    𝜓(𝑥, 𝑦) = GiÇ­B
Ã

sin Ã+
B
sin Ã-

B
.    (4.19) 

The horizontally uniform vertical velocity field is defined by w(z) = kz, with k = 0.001 s-1. 

A batch of 984 backward trajectories is seeded in a concentric circular pattern12 from the z 

= 9 km level and run for 30 min, and selected horizontal projections are shown in Fig. 4.3a, 

superimposed upon the horizontal flow field. Since the horizontal winds are steady-state, 

trajectories should follow contours of 𝜓. Visual inspection of Fig. 4.3a suggests that 

trajectories are closely following streamlines, and deviations of 𝜓 from its initial value 

																																																								
12 Trajectories are seeded at 15° azimuthal intervals for every radius between r = 10 km 
and r = 50 km. 
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along all trajectories run are found to be less than 0.02% (not shown). Backward trajectory 

height-versus-time traces follow the function 𝑧 = 	 𝑧U𝑒��} with 𝑧U = 9 km (not shown) - 

this is the exact solution to the differential equation for parcel height along all backward 

trajectories. 

 

 

Ω

Ur
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ß Figure 4.3 (a) Horizontal flow field used for the analytical tests, with streamfunction 
(shaded, ´ 10-3 m2 s-1) and flow vectors (m s-1). Representative 30-m backward trajectories 
for the first analytical test are shown in black, with squares denoting their seeded initial 
positions. (b) Horizontal variation of vertical motion at the initial time (shaded, m s-1) used 
for the second analytical test. This vertical motion pattern translates azimuthally 
counterclockwise and radially outward over time, as shown by the black arrows. 
 

The second test is designed to verify that the AC algorithms are free of code errors. 

It uses the same computational grid and horizontal flows employed for the first test, but 

with the steady-state w = kz field replaced with a horizontally-varying pattern (Fig. 4.3b) 

that rotates cyclonically and translates radially outward. We keep w constant with height. 

In cylindrical coordinates, it can be expressed as 

  𝑤(𝑟, 𝜆, 𝑡) = 𝑤g¡+ sin 2𝜋 ©	�	Ê}
BË

sin 2𝜋 d	�	�r}
Br

,  (4.20) 

with azimuthal angle λ measured counterclockwise from the positive x axis, radius r 

measured from the domain center, and parameters wmax = 5 m s-1, Lλ = 60°, Lr = 10,000 m, 

Ω = 0.1° s-1, and Ur = 8.33 m s-1. Using the product rule, Eq. (4.20) can be shown to satisfy 

)Ì
)}
+ 𝑈d

)Ì
)d
+ Ω )Ì

)©
= 0; thus, w is conserved for a parcel following the advection flow 

vector (Ur , Ω). The 984 30-min backward trajectories from the first test are re-launched 

from z = 5 km, using both LI and AC, on flows with varying temporal resolution Δt: 5 min, 

2.5 min, 1 min, and 30 s. The 30-s LI experiment supplies the “reference trajectories.” AC 

is applied to the w-field only. For AC experiments, each level is divided into subdomain 

arcs with (r, λ) resolutions of 4-km × 30°. Since w is conserved following the advective 

flow by design, we replace AAM in Eqs. (4.9) and (4.11) with w when solving for Ur and 

Ω. The AC algorithm otherwise follows the one described in sections 4.2.3 and 4.2.4.  
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Figure 4.4 Cost function J(Ur , W) (shaded, m4s-3 ´ 1.8/p ´ 105)  evaluated for a selected 
subdomain on the analytical flow field shown in Fig. 4.3b for the 5-min data input interval 
(shaded) and the 2.5-min data input interval (gray contours) ending at t = 30 min. To 
compute J, Eq. 4.9 is solved using a range of input Ur and W values, with AAM replaced 
by w. Black arrow points to the local minimum corresponding to the true advective flows 
(i.e. Ur = 8.33 m s-1 , W = 0.1 deg s-1). Letters A, B, and C label spurious local minima (see 
text). Black ´-symbols (open circles) show first-guess (Ur , W) combinations that 
converged to values close to the true advective flows (converged to spurious solutions) 
using the iterative Gal-Chen procedure with 5-min input data. Black line segments connect 
intermediate (Ur , W) solutions found over the 20 iterations leading to the final (Ur , W) 
solution, denoted by black triangles, for two selected first-guesses. 
 

Before examining trajectory errors, let us first verify that the iterative Gal-Chen 

based procedure can converge upon the true Ω and Ur, given different first-guess values. 

A

B C
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Figure 4.4 shows the cost function J(Ur, Ω) computed by “brute force” for a selected 

subdomain from the 5-min output data for a range of Ur and Ω inputs. For each Ur and Ω 

pair, the subdomain w-field is advection-corrected over a Δt = 5-min period using a 10-s 

computational timestep, and then Eq. (4.9) is evaluated. As expected, a local minimum can 

be found for the “true” advections (Ur = 8.33 m s-1, Ω = 0.1° s-1). Note, however, the 

regularly-spaced pattern of additional local minima A, B, and C located at (Ur ~ -25.0 m s-

1, Ω ~ 0.1° s-1), (Ur ~ -9.0 m s-1, Ω ~ 0.0° s-1), and (Ur ~ 26.0 m s-1, Ω ~ 0.0° s-1), respectively; 

this is consistent with J being nonunique in Ur and Ω, as discussed in section 4.2.4. To 

understand the physical basis for these spurious minima, consider w(r, λ, t) at two data 

input times t = 0 and t = T, denoted by w0 and wT, respectively: 

																			𝑤U = 	𝑤g¡+ sin 2𝜋 ©
BË

sin 2𝜋 d
Br
						                           (4.21a)    

																			𝑤Y = 𝑤g¡+ sin 2𝜋 ©�Ê�rÍ®Y
BË

sin 2𝜋 d�Îr,�rÍ®Y
Br

,          (4.21b) 

where  Ωtrue and Ur,true represent the true advection velocities. Due to w(r, λ, t) being doubly 

periodic in r and λ (Fig. 4.3b), Eqs. 4.21(a,b) can also be satisfied by any wT phase-shifted 

by integer multiples of (i) one wavelength in either r or λ or (ii) one-half wavelength in 

both r and λ. Thus, Ωtrue and Ur,true may be replaced with two families of infinite solutions:    

𝑈d = 𝑈d,}dh" +
gmBr
Y

, m1=0,±1,2,3, …		

														Ω = Ω}dh" +
g�BË
Y

, m2=0,±1,2,3, …                                   (4.22), 

and 

		𝑈d = 𝑈d,}dh" +
fmBr
Y

, n1=±
L
M
, N
M
, P
M
, …		

		Ω = Ω}dh" +
f�BË
Y

, n2=±𝑛L ± 0,1,2, …                              (4.23). 
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Local minima A, B, and C from Fig. 4 are close to the Eq. (4.22) (m1 = -1; m2 = 0), Eq. 

(4.23) (n1 = -L
M
; n2 = -L

M
), and Eq. (4.23) (n1 =  +L

M
; n2 = -L

M
) solutions, respectively, for T = 300 

s. Eqs. (4.22) and (4.23) show how the spurious solutions become more distant from (Ur,true 

, Ωtrue ) as the data input interval T decreases. Thus, only the local minimum (Ur,true , Ωtrue ) 

remains over the input (Ur, Ω ) range shown in Fig. 4.4, when Δt is reduced to 2.5 min. The 

iterative Gal-Chen solver initialized with a range of first-guess (Ur, Ω ) pairs converges on 

(Ur,true , Ωtrue ) as long as the first-guesses are closer to (Ur,true , Ωtrue ) than to any of the 

spurious nodes (Fig. 4.4).    

Figure 4.5a shows traces of w(r, λ, t) interpolated along a representative trajectory 

using LI and AC over a range of Δt. All AC experiments use the iterative Gal-Chen 

procedure initialized with Ur = 0 m s-1 and Ω = 0.06° s-1. LI estimates move increasingly 

far from the reference trajectory trace within data input intervals as Δt increases, with w 

errors growing as large as 3 m s-1 for Δt = 5 min; AC estimates, on the other hand, remain 

close to the reference solution, even for coarser Δt. Figure 4.5b compares the growth of 

IDEi
VERT,LI and IDEi

VERT,AC along all 984 backward trajectories for the different Δt 

experiments. A substantial spread in IDEi
VERT,LI among the trajectories develops over time 

for the coarser data input intervals (Δt = 2.5 min and 5 min), as indicated by orange and 

magenta lines in Fig. 4.5b; this reflects the fact that w, translating with tangential velocity 

Ωr, becomes locally less stationary in time with increasing radius and hence LI becomes 

an increasingly poorer w-estimator for large radii.13 Applying AC in lieu of LI reduces the 

																																																								
13	Recall that the backward trajectories follow the steady-state horizontal traces shown in 
Fig. 4.3a. Therefore, each of them remains at a nearly constant radius, although they are 
seeded over a large radial range.		
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2.5-min and 5-min IDEi
VERT,LI by up to an order of magnitude, as shown by green and blue 

colored lines in Fig. 4.5b.  

 

Figure 4.5 Results of the second analytical test showing (a) vertical velocity along a 
representative backward trajectory, with linear interpolation (LI) and advection correction 
(AC) time interpolation methods both tested for 5-m, 2.5-m, 1-m, and 30-s data input times 
and (b) individual height displacement errors as a function of time along all 984 backward 
trajectories from the experiments shown in (a). The 1-m LI trajectory error growth pattern 
(not shown here) closely resembles that of the 5-m AC trajectories. Reference trajectories 
are computed from the 30-s input data using LI. 
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Results of the analytical tests described above suggest that the major components 

of our trajectory model can function properly when applied to a simple flow field 

containing perturbations that are perfectly conserved while translating through space. In 

the next section, we must determine whether AC can reduce trajectory errors for realistic 

TC flows, given several potential pitfalls that may become more problematic with coarser 

input data resolutions. They include the validity of the frozen-turbulence hypothesis and 

the potential for the iterative Gal-Chen procedure to retrieve spurious (Ur,  Ω ) solutions. 

 

4.4 Hurricane Joaquin (2015) tests 

The Hurricane Joaquin (2015) WRF simulation is output at 5-min and 1-min 

temporal resolutions for the forecast period 24:00-28:00 (hh:mm denotes hours and 

minutes). During this period, the Category 1 hurricane is undergoing RI while the inner-

core radar reflectivity structure remains relatively asymmetric, with the strongest 

convection in the southeastern eyewall (see Figs. 2.5c,d). Each experiment runs 4-h 

backward trajectories from every gridpoint over a 100 km × 100 km horizontal section of 

the inner core at z = 6 km height and time 28:00 (10,201 total). Table 4.1 summarizes the 

three AC implementations run from 5-min output that are tested against LI from 5-min 

output (hereafter LI-5). Both ACW and ACUVW solve for Ur and Ω using the iterative Gal-

Chen based procedure described in section 4.2.4; ACW advection-corrects only vertical 

velocity, using LI for horizontal winds, while ACUVW advection-corrects the full 3D 

velocity vector (u, v, w). AC-MWUVW modifies ACUVW by setting Ur and Ω to the 

subdomain-averaged “first-guess” radial and angular velocities. Error statistics are 
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computed after 2 h of backward integration using reference LI trajectories run from the 1-

min output data (hereafter LI-1). 

Table 4.1 Advection correction experiments  

 Name           Wind Vector Components Interpolated     Procedure for Finding Ur and W                                                            
ACW     w                                                          iterative Gal-Chen 
ACUVW                                                u, v, w                                                       iterative Gal-Chen 
AC-MWUVW                                   u, v, w                                   use subdomain-averaged flows 
 

 4.4.1 Trajectory error statistics 

Figure 4.6 plots ∆IDEHORIZ and ∆IDEVERT as a function of trajectory seed position 

for the ACW and ACUVW experiments. Note that ∆IDEHORIZ and ∆IDEVERT measure the 

change in horizontal and vertical 2-h position errors, respectively, for the ith LI-5 trajectory 

when it is re-run using AC, with positive (negative) values indicating improved (worsened) 

accuracy relative to the ith reference LI-1 trajectory. As expected, replacing LI-5 with ACW 

primarily impacts trajectory accuracy in regions where the vertical motion field is highly 

variable in space (Figs. 4.6a,b) and nonstationary in time (not shown): namely, near and 

downstream of larger-scale ascent in the eastern eyewall and in portions of the outer 

circulation. The ACW ∆IDEHORIZ and ∆IDEVERT patterns show some spatial correlation, 

which is not surprising, given that parcel vertical velocity corrections should lead to 

horizontal position corrections in this vertically sheared tangential wind circulation (not 

shown). Although ACW has some positive impact around the edges of the southeastern 

eyewall updraft core, it degrades a substantial percentage of the LI-5 trajectories seeded 

from the northeast eye-eyewall interface region. By contrast, ACUVW reduces LI-5 errors 

over a larger portion of the sample, as evident in the more widespread blue shading, and it 

performs particularly well in the inner northeast eyewall (Figs. 4.6c,d). For example, 

consider the boxed area where ACUVW reduces many LI-5 horizontal (vertical) trajectory 
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errors by > 30 km (> 3 km). Many backward trajectories seeded in this box originate from 

the boundary layer via eyewall ascent, as well as from the outer environment via a 

descending mid-to-upper-level inflow channel (Fig. 4.7). Confluent flows present a 

challenging scenario for backward trajectory calculations, where relatively small 

uncertainties in the local wind estimation can lead to large position errors (Dahl et al. 2012).    

 

Figure 4.6 Distribution of vertical velocity (black-solid contours at 1/5/10 m s-1; black-dotted contours at -2 
m s-1) and horizontal storm-relative flow vectors (m s-1) taken from the WRF-simulated Hurricane Joaquin 
(2015) 1-km resolution domain at z = 6 km and t = 28:00. Four-hour backward trajectories are seeded from 
this time at every 1-km gridpoint, for a total of 10201 trajectories. (a) Differenced 2-h horizontal individual 
displacement errors (DIDEHORIZ) (shaded, every 10 km except every 5 km for |DIDEHORIZ| < 10 km) plotted 
as a function of seed position for ACW. (b) As in (a) but for differenced vertical individual displacement 
errors (DIDEVERT) (shaded, every 1 km except every 0.5 km for |DIDEVERT| < 1 km). (c),(d) As in (a) and (b), 
respectively, but for the ACUVW experiment. Horizontal distances shown here and for all subsequent figures, 
unless otherwise noted, are measured in km from the domain center, with negative values for regions south 
and west of the domain center.  
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Figure 4.7 Three-dimensional 4-h backward trajectories computed from the Hurricane 
Joaquin (2015) WRF simulation 5-min output using advection correction of the horizontal 
and vertical velocity fields (ACUVW). All trajectories shown here are seeded at z = 6 km, 
forecast hour 28:00, and they are selected from within the rectangular region shown in Fig. 
4.6. They are stratified by final (i.e. forecast hour 24:00) height, with red colors showing 
trajectories originating below z = 1 km (23 total) and blue colors showing trajectories 
originating from above z = 6 km (40 total). Black arrows highlight the convergent 
flowpaths of the two backward trajectory clusters. Horizontal distances are measured from 
the 1-km domain southwest corner. 
 

 

 

 

N
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Figure 4.8 (a) Histogram of Differenced horizontal individual displacement errors 
(DIDEHORIZ) for the 10,201 ACUVW trajectories, using a 0.25-km bin width. Blue (red) bars 
show trajectories with improved (worsened) accuracy, as measured by a reduced 
(increased) IDEHORIZ compared to the same trajectories run from the 5-m model output 
using LI. Lines connect the histogram bin heights for the 10,201 ACW trajectories, with 
green (black) denoting improved (worsened) accuracy. (b) As in (a) but for DIDEVERT. 
Yellow vertical lines denote the sample mean values. 
 

These results are supported by histograms of ∆IDEHORIZ, given in Fig. 4.8a, which 

show a rightward (positive) shift in the ACUVW distribution relative to ACW. The ∆IDEVERT 

distribution differs less between the two experiments; however, ACUVW overwhelmingly 

outperforms ACW for the extreme distribution tails ( |∆IDEVERT| > 1 km ) not shown on 

these histograms (cf. Figs. 4.6b,d and 4.8b). By replacing ACW with ACUVW, the mean 

∆IDEHORIZ increases from 1.42 to 4.44 km, and the number of trajectories with ∆IDEHORIZ 

> 10 km increases from 1030 to 1581 (Table 4.2). Interestingly, AC-MWUVW slightly 

outperforms ACUVW in these statistics; similar trends can be found for ∆IDEVERT (Table 

4.2). 
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Table 4.2 Summary statistics for the ACW, ACUVW, and AC-MWUVW experiments using 
the Hurricane Joaquin (2015) simulation dataset. Italicized values highlight the 
experiment with the most improved trajectory accuracy for each statistic.   

                                                         DIDEHORIZ                                                              DIDEVERT                              

  Statistic                ACW            ACUVW     AC-MWUVW       ACW        ACUVW  AC-MWUVW 
Mean DIDE (km)     1.42          4.44                 4.97              0.11      0.33            0.39 
% Left-Tail14             5.3               4.0                3.8                5.4              3.6              3.6                                  
% Right-Tail15         10.1             15.5              16.2                8.7            13.1            13.9 
 

 4.4.2 Evaluation of the iterative Ur and Ω solver 

Let us now examine the advective flows Ur and Ω retrieved by the iterative Gal-

Chen based solver for the 5-min and 1-min Joaquin (2015) input data. In particular, we are 

interested in (i) how often the algorithm fails to converge, (ii) the solution nonuniqueness 

threats, and (iii) how these flows might differ from the model-output local winds. 

Considering all subdomains over the 24:00 – 28:00 period, the nonconvergence frequency 

is 3.28 % for 5-min data and near zero (< 0.01 %) for 1-min data; for cases of 

nonconvergence, Ur and Ω are set to the subdomain-averaged flows.16  

Taking a horizontal plan view of 28:00 model-output winds at z = 6 km, we find a 

markedly asymmetric pattern, with 𝜔 stronger in the northern eyewall (Fig. 4.9a), and a 

wavenumber-2 inflow-outflow pattern in ur (Fig. 4.9e). Ur and Ω retrieved from the 5-min 

data (Figs. 4.9b,f) are generally similar to ur and 𝜔, although they contain a number of 

sharp local discontinuities that likely represent spurious solutions. Many of these 

																																																								
14	Percentage of all trajectories with DIDEHORIZ < -10 km, DIDEVERT < -1 km 	
15	Percentage of all trajectories with DIDEHORIZ > 10 km, DIDEVERT > 1 km 
 
	
16 Subdomain advections are also set to the first-guess values when the iterative Gal-Chen 
based procedure converges upon physically unreasonable solutions, where Ur exceeds 40 
m s-1; these instances are quite rare, however, with a ~ 0.1 % occurrence rate for the 5-
min data.  
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discontinuities are eliminated using a filter applied to the 3D Ur and Ω fields (Figs. 4.9c,g). 

In the first pass, the filter identifies all subdomains where either Ur or Ω differ by more 

than 20% from a local average computed from the 26 surrounding subdomains in (r, 𝜆, z) 

space. The flagged “discontinuity subdomains” are then assigned Ur and/or Ω values 

averaged from surrounding non-flagged subdomains in the second pass. All ACW and 

ACUVW experiments described here use filtered advective flows. Finally, note the smoother 

unfiltered Ur and Ω patterns retrieved from the 1-min data, compared to the 5-min data (cf. 

Figs. 4.9b,f, and 4.9d,h). These differences are consistent with our analytical tests (section 

4.3) showing that spurious solutions move farther away from the true solution for smaller 

data input intervals; therefore, the iterative Gal-Chen based procedure should be less likely 

to converge upon them, given reasonable first-guesses. S15 found a similar result in their 

numerically-simulated data tests (see their Figs. 16 and 18).  
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Figure 4.9 (a) Distribution of the model-output total angular velocity (𝜔) (shaded, ´ 300° 
s-1) with storm-relative horizontal flow vectors (m s-1) at z=6 km from the Hurricane 
Joaquin (2015) simulation at 28:00; (b) as in (a) but for the advective component of angular 
velocity (Ω) found by the iterative Gal-Chen procedure using 5-min data output data; (c) 
as in (b) but after applying a filter to the Gal-Chen Ω	field to remove local discontinuities, 
and (d) as in (b) but from the iterative Gal-Chen procedure using 1-m data. (e) As in (a) 
but for the total radial velocity (ur) (m s-1). (f)-(g) As in (b)-(d) but for the advective 
component of the radial velocity (Ur) (m s-1). Dashed lines in (a),(c),(e), and (g) denote the 
vertical cross section shown in Fig. 4.10, and the black rectangular box corresponds to the 
region highlighted in Fig. 4.6.  
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Figure 4.10 (a) East-west vertical cross section of the model-output total angular velocity 
(𝜔) (shaded, ´ 300° s-1) at the forecast time 28:00 of the simulated Hurricane Joaquin 
(2015), running along the line AB shown in Fig. 4.9. (b) As in (a) but for the advective 
component of the angular velocity (Ω) found using the iterative Gal-Chen procedure over 
the preceding 5-m data output interval and then applying a filter to remove local 
discontinuities. (c) As in (a) but for the model-output total radial velocity (ur) (shaded, m 
s-1), with in-plane flow vectors (m s-1; vertical velocity multiplied by 5) and qe  (K; 350/354 
thin-contoured, 358/362 thick-contoured). (d) As in (b) but for the advective component of 
the radial velocity (Ur) (m s-1). Distances from the 1-km model domain center (km) are 
shown on the abscissa.  
 

A vertical cross section taken through the 5-min filtered Ur and Ω fields (Fig. 4.10) 

indicates that the advective flow structures are (i) vertically coherent despite being solved 

for one level at a time, and (ii) generally similar in structure to the total flows in terms of 

the primary (Figs. 4.10a,b) and secondary circulations (Figs. 4.10c,d). One exception to (ii) 

is the aforementioned descending inflow channel for r = 50-100 km, z = 6-10 km. Here, 
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|Ur| is smaller than |ur|, suggesting that local perturbation inflows ur´ may be present. 

Examining J(Ur, Ω) computed for a representative subdomain in this region (Fig. 4.11), we 

see that the global J-minimum does in fact correspond to a |Ur| roughly 50% smaller than 

the first-guess |ur|, and that the iterative Gal-Chen based procedure successfully locates this 

global minimum. No problematic spurious local minima are present nearby. 

 

Figure 4.11 As in Fig. 4.4 but the cost function J(Ur , W) (m6s-3 ´ 9/p ´ 1015)  evaluated 
for a z = 6 km subdomain enclosed within the boxed region shown in Fig. 4.6, computed 
over the 5-min time interval preceding forecast time 28:00. 
 

 4.4.3 Remarks 

To better understand why LI-5 trajectory errors in the northeastern inner eyewall 

are substantially reduced by ACUVW but not by ACW (Figs. 4.6a,c), let us examine the time 

evolution of Joaquin’s z = 6 km horizontal winds over three successive 5-min output times, 

as shown in Fig. 4.12. Wind and relative vorticity anomalies are computed with respect to 



	

	 	 	117	

local time averages over the 1-h period centered on 28:00. We find three distinct positive 

vorticity anomalies rotating cyclonically around the inner eyewall; these structures 

resemble the mesovortices found in the simulated Hurricane Bonnie (1998) by Braun et al. 

(2006). They translate between model output times over distances similar to their ~ 10 km 

horizontal scale. The horizontal velocity field otherwise remains quite stable over the 

27:30-28:30 period. IDEHORIZ,LI is largest in the region transited by these disturbances, 

where it ranges from 10 km to as high as 70 km locally (not shown), suggesting that LI-5 

is poorly estimating the local winds here. The widespread ACUVW error reduction found 

here suggests that AC of the horizontal winds improves the local wind estimates.  
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Figure 4.12 (a) Distribution of the horizontal storm-relative flow vectors (at forecast time 
27:50), and the vertical component of relative vorticity anomaly (∂v/∂x - ∂u/∂y)´ (shaded, 
´ 10-3 s-1), measured with respect to the local temporal average over the forecast period 
27:30 – 28:30 from the Hurricane Joaquin (2015) WRF simulation 1-km resolution grid at 
z = 6 km. (b) and (c) As in (a) but for forecast times 27:55 and 28:00, respectively. (d)-(f) 
As in (a)-(c) but with perturbation flow vectors measured with respect to the local temporal 
average over the forecast period 27:30 – 28:30. Letter labels track cyclonic flow 
perturbations embedded in the mean flow.  
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The slight improvement of AC-MWUVW over ACUVW in terms of bulk sample 

statistics (Table 4.2) suggests that the subdomain-averaged flows are a reasonably good 

estimate of the advective flows for most portions of the simulated Joaquin (2015) 

circulation. Horizontal and vertical cross sections comparing (ur, 𝜔) and (Ur, Ω) support 

this conclusion (Figs. 4.9 and 4.10). However, we might expect the relative performance 

of the AC-MWUVW and ACUVW methods to depend on a number of factors, including the 

TC case, region of interest, subdomain size, and model output time resolution. For 

example, even though S15 found that AC and AC-MW yielded similar mean trajectory 

errors when the subdomains were kept sufficiently small, they also found that AC-MW 

performed quite poorly in the mesocyclone inflow region, where the local and pattern-

translation u-wind speeds differed by 25 m s-1. 

 

4.5 Hurricane Wilma (2005) tests 

In this section, we investigate the utility of AC for computing trajectories through 

TC updraft cores, using the WRF-simulated Hurricane Wilma (2005) 5-min output data 

(Chen et al. 2011). Wilma’s RI onset and upper-level warm core development coincide 

with an outbreak of particularly intense, well-defined CBs (w > 15 m s-1) that rotate around 

the eyewall with lifetimes of ~ 30 min (see Fig. 5 in CZ13). Only 5-min output was 

available for this case. However, an analysis of the advective flows retrieved by the Gal-

Chen procedure over the 4-h backward trajectory computation period (not shown) indicates 

that they were generally similar to the local winds, with an overall nonconvergence rate of 

5.7 %. To compare the same trajectories generated using LI and AC, we examine along-
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trajectory traces of w and qe. Assuming saturated conditions, parcel qe is conserved after 

neglecting mixing, hydrometeor heat retention, and the latent heat of fusion. Our objective 

here is to show how artificial oscillations in parcel w and qe result when LI is applied to 

rotating updraft cores sampled at less-than-ideal temporal resolution, and how AC can 

mitigate this problem. 
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ß Figure 4.13 (a) Distribution of qe (shaded, K), vertical velocity (contoured at 5/10/15 m 
s-1), and in-plane flow vectors (m s-1) taken from the Hurricane Wilma (2005) prediction 
at  z = 14 km for forecast time 16:55. Letter labels denote convective burst elements. (b) 
As in (a) but for forecast time 17:00. (c) As in (b) but zoomed in to show the seed positions 
(colored squares) of the convective burst trajectories. Horizontal distances are measured 
from the 1-km resolution model domain center.  
 

Consider CB “A” shown in Figure 4.13. While rotating about 30° counterclockwise 

over the 16:55-17:00 period, the updraft has broadened and intensified; note how the 

strongest portion moves in concert with a positive qe anomaly - possibly an artifact of 

intense fusion latent heat release (LHR) (Miller et al. 2015). Figure 4.14a shows a cluster 

of 4-h forward and 4-h backward AC trajectories seeded from inside CB “A” at z = 14 km 

(Fig. 4.13c). For comparison, a few trajectories representative of the background secondary 

circulation, with maximum w not exceeding 7.5 m s-1, are shown in Fig. 4.14b. Both CB 

and “non-CB” updrafts originate from MBL parcels spiraling inward, with their qe 

increasing due to wind-induced ocean surface latent and sensible heat fluxes, consistent 

with the WISHE hypothesis (Emanuel 1986). CB and non-CB parcels both experience a qe 

reduction with ascent into the middle levels, likely from dry air entrainment (Cram et al. 

2007), followed by a qe recovery in the upper troposphere, possibly on account of fusion 

heating (Fierro et al. 2009, 2012; Miller et al. 2015). Note the more pronounced qe “dip” 

extending through a deeper layer for the secondary circulation cluster; this is consistent 

with reduced upper-level fusion LHR in their comparatively weaker updrafts. 
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Figure 4.14 Three-dimensional plots showing 8-h trajectories run from the Hurricane 
Wilma (2005) WRF prediction 5-min output, using advection correction time interpolation 
of the vertical velocity field (ACW). Four-hour forward and four-hour backward trajectories 
are seeded from z=14 km at 17:00. Panel (a) shows a cluster of 16 trajectories seeded from 
inside convective burst “A” in Fig. 4.13, while (b) shows 13 representative background 
secondary circulation trajectories. Lines are colored by qe (K) interpolated along each 
trajectory. Purple shading in (a) shows the total (latent + sensible) heat flux (W m-2) from 
the ocean surface at forecast time 15:00. Horizontal distances are measured from the 
southwestern corner of the 1-km resolution model domain. 
 

To evaluate the impacts of AC, in Figure 4.15 we compare w, qe and AAM along 

the CB “A” backward trajectories computed using LI, ACW, and ACUVW. Note the 

prominent w and qe oscillations above z=6 km for the LI trajectories (Figs. 4.15b,c). The 

AC trajectories, on the other hand, show a more gradual decrease in w and qe with 

downward extent (cf. Figs. 4.15f,g and 4.15j,k). AAM is reasonably well-conserved along 

most trajectories above z = 3 km (z = 1 km) for LI (AC) (Figs. 4.15d,h,l). Previous TC 

AAM budgets using azimuthally-averaged variables have found friction and turbulence 

forcing to be small above the MBL (Zhang et al. 2001; Qin et al. 2018b). Our results 

suggest that the 3D AAM material conservation assumption used for the Gal-Chen based 

Ur and Ω solver was reasonable for this CB.  
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Figure 4.16 re-plots w and qe as a function of time along the first 10 minutes of the 

LI backward CB trajectories. Note how the oscillations of w and qe generally stay in phase 

along each trajectory. Furthermore, w and qe minima tend to occur in between the model 

output times, suggesting that they may be unphysical artifacts of the LI damping 

mechanism illustrated in Fig. 4.1. Between 16:55 and 17:00, the ~10° wide CB “A” core 

region (w > 15 m s-1) near r = 20 km rotates from ~215° to ~245° azimuth (Figs. 4.13a,b). 

The large “dip” in w estimated along the LI trajectories around backward integration time 

t = 150 s (Fig. 4.16a) is consistent with w(r = 20 km, 𝜆 = 230°) being small for the two 

nearest model output times (Figs. 4.13a,b).17 This is simply a consequence of CB “A” 

having a relatively small horizontal scale relative to its translation speed. The absence of 

any significant local minima in the upper-level ACW w profiles (Fig. 4.15j), on the other 

hand, results in ACW bringing the parcels ~2.5-km lower compared to LI after 20 minutes 

of backward integration (not shown).  

 

 

																																																								
17	Azimuthal-height plane cross-sections (not shown) reveal that the CB “A” updraft core 
remains nearly upright above the melting level at both 16:55 and 17:00. 
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Figure 4.15 (a) Radius-height projections of the 4-h backward CB “A” trajectories from 
the Hurricane Wilma (2005) WRF simulation (Fig. 4.13c), computed using linear 
interpolation (LI) in time. Orange (green) trajectories are seeded from the r = 20 km (r = 
23 km) radius, and they correspond to the colored seed positions in Fig. 4.13c. Trajectory 
#3 is outlined in black. Red squares (blue crosses) denote seeded (final) positions. (b) 
Vertical velocity (m s-1) interpolated along the LI backward trajectories shown in (a). (c) 
As in (b), but for qe (K). (d) As in (b), but for AAM (´ 5 ´ 105 m2 s-1). (e)-(h) As in (a)-(d) 
but for the same trajectories re-run using advection correction of the horizontal and vertical 
velocity fields (ACUVW). (i)-(l) As in (a)-(d) but for the same trajectories re-run using 
advection correction of the vertical velocity field (ACW). 
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Figure 4.16 (a) Vertical velocity (m s-1) plotted as a function of integration time for the 
CB “A” backward trajectories computed using LI, color coded as in Fig. 4.15. Arrows label 
model data output times. (b) As in (a) but for qe (K). 
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4.6 Summary and conclusions 

In this chapter, we present a new algorithm for computing trajectories from 

simulated TC data that interpolates the gridded winds in time using AC in lieu of traditional 

LI. Our goal is to reduce trajectory errors that result from inaccurate estimates of the wind 

field at the computational timestep, which is typically smaller than the model output time 

resolution due to computational stability constraints. AC algorithms interpolate variables 

in time from a reference frame that moves with the advective flow velocity.  

Our AC method extends the techniques previously developed in GC82 and S15 by 

(i) extending them to 3D flow fields, (ii) applying the frozen turbulence constraint to AAM, 

and (iii) defining the advective flows in cylindrical rather than Cartesian coordinates. We 

first tested our trajectory computation algorithms on an analytical flow field and 

determined that they are likely free of code errors. Next, we tested several alternate AC 

algorithms against LI using a batch of 10,201 backward trajectories run from Hurricane 

Joaquin (2015) WRF simulation 5-min output, with 1-min output reserved for computing 

reference, or “truth” trajectories. While AC of only w led to little overall improvement over 

LI, AC of the full 3D wind vector (u, v, w) improved trajectory accuracy more substantially, 

especially in the inner eyewall region where eyewall mesovortex structures were being 

advected by the tangential winds. Unlike S15, we obtained slightly better results when we 

defined the advective flows as gridpoint averages local to each subdomain, as opposed to 

using an iterative algorithm that minimized a cost function penalizing deviations from 

material conservation of AAM. This result was consistent with our findings that the 

iterative algorithm (i) retrieved advective flows that did not differ substantially from the 

model-output total winds over much of the model domain, and (ii) occasionally converged 
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on spurious solutions, the likelihood increasing with coarser data input resolution. Finally, 

we showed how AC could eliminate along-trajectory w oscillations that appear when LI is 

applied to rotating deep convective updrafts in a Hurricane Wilma (2005) WRF simulation; 

these oscillations likely result from the model output frequency being too coarse relative 

to the horizontal scale and translation speed of the updraft disturbances.  

 These results suggest that AC can improve the accuracy of trajectories computed 

from TC simulation output, particularly in regions where flows are unsteady over time, 

such as in eyewall mesovortices and convective bursts. Like S15, we recommend that AC 

be applied with caution, as there may be some TC cases, or at least portions of their 

circulations, where neither subdomain-averaged winds nor the iterative Gal-Chen based 

procedure could yield reasonably accurate advective flows. Ideally, AC should be tested 

against LI using a set of reference trajectories computed at model runtime, or from higher-

resolution data. Otherwise, the quality of the advective flow solution may be examined 

using analyses similar to those shown in section 4.4.2 herein.  

More generally, our findings motivate the testing of AC in trajectory calculations 

for meteorological applications beyond TCs. For these cases, better results would likely be 

obtained if the horizontal advective flows were defined in Cartesian rather than cylindrical 

coordinates, as in S15. It may also be worthwhile to test the impact of advection-correcting 

variables in the vertical direction. Here, vertical advections could be defined either by 

minimizing a cost function with respect to 3D flows, as in Zhang and Gal-Chen (1996), or 

simply by setting them to a locally-averaged vertical velocity. In chapter 5, we will apply 

this 3D trajectory algorithm to a variety of flow structures using high-resolution WRF 

simulated TCs. 
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Chapter 5. Applying the Trajectory Model to Rapidly Intensifying 
Hurricane Wilma (2005): Tracing the Roots of Convective Bursts in the 

Eyewall 
 

 Material presented in this chapter has been submitted to Monthly Weather Review as 
Miller and Zhang (2019c) and is currently under review 

 
5.1 Introduction 
 

Observations of TCs over recent decades have shown that outbreaks of inner-core 

deep convection, the so-called “convective bursts” (CBs), often precede or coincide with 

episodes of RI, defined for Atlantic TCs as a VMAX intensification rate exceeding 15 m s-1 

(24 h)-1 (Kaplan and DeMaria 2003). Gentry et al. (1970) identified these features as 

localized cold brightness temperature anomalies in satellite imagery and recognized their 

potential significance in the TC intensification process. Subsequent studies used airborne 

Doppler radar and flight-level temperature instrumentation to analyze CB three-

dimensional kinematic structure and thermodynamics (Rodgers et al. 1998; Heymsfield et 

al. 2001; Molinari et al. 2006; Houze 2009; Guimond et al. 2010). Convection-resolving 

numerical TC simulations have captured similar features (Chen and Zhang 2013; Chen and 

Gopalakrishnan 2015; Nguyen and Molinari 2015).  

  Previous studies have proposed several mechanisms through which inner-core CBs 

may facilitate TC intensification. According to one hypothesis, compensating subsidence 

flanking the inner edges of CB updrafts enhances development of the warm core. 

Heymsfield et al. (2001) showed how a cluster of CB subsidence currents originating near 

the tropopause may have contributed up to 3° C of midlevel eye warming in Hurricane 

Bonnie (1998). Provided that adiabatic warming offsets evaporative cooling in subsidence 
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currents, the high inertial stability inside the radius of maximum wind (RMW) may help to 

“trap” subsidence-induced heating in the eye (Hack and Schubert 1986). CBs or “hot 

towers” may also facilitate tropical cyclogenesis by moistening the inner-core 

midtroposphere, thereby “priming” it for the subsequent development of sustained 

convection (Nolan 2007; Montgomery et al. 2006). Other studies have shown how CBs 

embedded in a developing TC circulation can spin up the tangential wind VT by collectively 

aggregating and stretching low-level cyclonic vorticity anomalies (Nguyen et al. 2008; 

Montgomery and Smith 2014; Nguyen and Molinari 2015). 

Hurricane Wilma (2005) underwent a record-breaking 12-hour RI event on 18-19 

Oct, featuring a PMIN deepening rate of 83 hPa (12 h)-1 with a PMIN and VMAX of 882 hPa 

and 82 m s-1, respectively. Wilma intensified in the western Caribbean under near-ideal 

environmental conditions with low VWS and high SSTs of 29-30 °C. The storm 

subsequently underwent an eyewall replacement cycle and weakened to Saffir-Simpson 

Category 4 intensity before making landfall near Cozumel Island on Mexico’s Yucatan 

Peninsula on 21 Oct; see Pasch et al. (2006) for more details. 

Chen et al. (2011, hereafter CZ11) generated a cloud-permitting prediction of 

Hurricane Wilma (2005) using the Weather Research and Forecasting (WRF) model. Using 

this dataset, Zhang and Chen (2012) demonstrated how upper-tropospheric eye warming 

accounted for the largest portion of Wilma’s hydrostatically-induced PMIN falls during RI. 

Chen and Zhang (2013, hereafter CZ13) showed how CBs, which they defined as updraft 

grid columns with w ≥ 15 m s-1 above z = 11 km, directed subsidence currents into the 

developing upper-level warm core around RI onset; Figure 5.1 shows an example of this 

process. Miller et al. (2015, hereafter M15) found that turning off the latent heat of fusion 
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resulted in a storm with fewer CBs, reduced upper-level warming, and a less extreme RI 

rate. They also used a heat budget to show that Wilma’s upper-level eye warming occurred 

primarily under adiabatic conditions. 

 

Figure 5.1 (a) WRF-predicted 16:10, z = 14 km temperature anomaly T´(z,t) (shaded, K), 
computed with respect to the 1000 km × 1000 km area-averaged temperature profile 
centered on the storm at the initial time 𝑇(𝑧, 𝑡 = 0). Vertical velocity (m s-1) is contoured 
(thin black at 2; thick black at 5/10/20/30; dotted blue at -5/-3/-1) and horizontal storm-
relative flow vectors (m s-1) are also shown. (b) Vertical cross section, taken along the 
dashed line A-B, given in (a), of 𝜃 (K, green-contoured every 5K over the range 360-380K, 
vertical velocity contoured as in (a), with in-plane storm-relative flow vectors (m s-1). 
Symbols LL and UL highlight the locations of the lower-level and upper-level warm cores, 
respectively. Note the different shading scales used for T´(z,t) in (a) and (b). 
 

On the vortex scale, eyewall vertical ascent connects the low-level radial inflow to 

the upper-level outflow, thus comprising the middle branch of the TC “secondary 

circulation”. Early theories of TC intensification (Charney and Eliassen 1964; Ooyama 

1969,1982; Shapiro and Willoughby 1982; Hack and Schubert 1986) recognized the 

significance of the secondary circulation in converting latent heat energy released by inner-

core deep convection into the swirling winds’ kinetic energy; however, they generally 

assumed eyewall ascent to be relatively weak, horizontally uniform, and constrained by 

LL

UL



	

	 	 	131	

balanced vortex dynamics. Over recent decades, however, observations and high-

resolution modeling of TC eyewalls have found considerable horizontal variation in the 

vertical velocity (w) fields, even for mature cases (Jorgensen 1984; Jorgensen et al. 1985; 

Marks and Houze 1987; Black et al. 1996; Braun 2002; Eastin et al. 2005a,b; Braun et al. 

2006; Hogsett and Zhang 2009; Rogers 2010; Rogers et al. 2015). All of these studies 

reported localized “cores” of stronger updrafts, as well as downdrafts being embedded 

within a weaker background ascent. Furthermore, Braun (2002) and Eastin et al. (2005a,b) 

showed that the updraft cores could be positively buoyant relative to the mesoscale eyewall 

environment, which implies the existence of conditional instability in the eyewall. M15 

found that azimuthally-averaged slantwise convective available potential energy (SCAPE) 

computed along constant-AAM surfaces exceeded 400 J/kg in their simulated Hurricane 

Wilma (2005) eyewall during RI. Assuming pseudoadiabatic thermodynamics and undilute 

ascent, SCAPE of this magnitude would support a theoretical maximum updraft speed 

wMAX-UNDILUTE ≅ 2𝑆𝐶𝐴𝑃𝐸 = 28 m s-1, which is comparable to the strongest CB updrafts 

found in their prediction. By contrast, the wind-induced surface heat exchange (WISHE) 

theory of TC intensification (Rotunno and Emanuel 1987; Emanuel 1997) is based upon 

the steady-state Emanuel (1986) model that assumes the TC eyewall to be everywhere 

neutral to moist pseudoadiabatic ascent. Perhaps most significantly, WISHE theory re-

focused attention on heat and moisture fluxes from the ocean surface as the primary source 

of high equivalent potential temperature (𝜃") air in a TC maritime boundary layer (MBL). 

Further work is clearly needed toward developing a more comprehensive model of TC 

intensification that incorporates the impacts of buoyant deep convection with insights 

gained from older models based on balanced dynamics (Charney and Eliassen 1964; 
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Ooyama 1982; Emanuel 1986) and moist neutral thermodynamics (Emanuel 1986). 

 The major objective of this chapter is to better understand the thermodynamics and 

three-dimensional structure of CBs associated with the RI of Hurricane Wilma (2005). It 

is still unclear how a mid-to-upper level TC eyewall can support large parcel buoyancy. 

Although wind-induced heat and moisture fluxes above warm SSTs provide an ample 

source of high 𝜃" air to a TC MBL (Emanuel 1986; Braun 2002; Zhang et al. 2002; Cram 

et al. 2007), excessive hydrometeor loading due to the moist tropical environment (Zhang 

et al. 2000), warming from latent heat release  (LHR) (Shapiro and Willoughby 1982; 

Emanuel 1986), and the midlevel entrainment of environmental low-𝜃" air (Cram et al. 

2007) could all render the eyewall a less favorable environment for maintaining buoyant 

updrafts. A few other questions are worth addressing. Given the rapidly rotating flows, to 

what extent can CB updraft roots be traced to portions of the MBL where ocean surface 

heat fluxes are locally higher? How do CB updrafts interact with the locally sheared (both 

horizontally and vertically) swirling winds? How do local pressure perturbations from 

hydrostatic balance affect CB updraft accelerations? For instance, Braun (2002) found that 

the vertical perturbation pressure gradient acceleration (PGA) was downward-directed 

everywhere except in the MBL along a trajectory computed from his simulated Hurricane 

Bob (1991).  

Unlike in many previous studies, this chapter’s objective will be achieved in a 

Lagrangian framework – that is, by using the Miller and Zhang (2019, hereafter MZ19) 

trajectory model to run a large batch of backward trajectories from the CZ11 Wilma (2005) 

WRF prediction that samples both CB updraft cores and the background secondary 

circulation. We focus more on the 12:00-20:00 (hh:mm format) prediction period, which 
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features intense inner-core CB activity, RI onset at 15:00, and the subsequent RI in VMAX 

from 38 to 58 m s-1. Wilma undergoes significant structural changes over this period, e.g., 

the axisymmetrization and contraction of the eyewall convection (see Figs. 12a-c in CZ11) 

and the intensification of the upper-level warm core (see Fig. 1a in CZ13). Our study 

combines a detailed analysis of the three-dimensional structure and thermodynamics of a 

selected CB with a statistical comparison of thermodynamic variables interpolated along 

samples of trajectories binned by updraft intensity. 

The next section describes the Hurricane Wilma (2005) WRF prediction, trajectory 

computation methods, experiment design, and statistical methods used for analyzing 

trajectory output data. Section 5.3 presents an analysis of a selected CB, and section 5.4 

compares a larger sample of CBs to the background secondary circulation in terms of their 

thermodynamic properties, environmental air entrainment, and vertical accelerations. A 

summary and concluding remarks are given in the final section. 

5.2 Datasets and methodology 
 

5.2.1 Hurricane Wilma (2005) WRF prediction 

CZ11 describe their Wilma (2005) WRF prediction configuration and observation 

validations in detail. They integrated the WRF Advanced Research core (ARW) for 72 

hours beginning at 0000 UTC 18 Oct 2005, using a two-way interactive, quadruply-nested 

(27/9/3/1 km) grid, 55 vertical 𝜎-levels and a 30-hPa model top. This prediction captures 

the timing, location, and rate of Wilma’s observed RI and subsequent eyewall replacement 

cycle reasonably well, along with the associated inner-core structural changes.  
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5.2.2 Trajectory computations 

Trajectories are computed from the Wilma WRF prediction 5-min output flow 

fields using the algorithm developed by MZ19. First, WRF 1-km domain 12:00-20:00 

output is de-staggered and vertically interpolated to height coordinates using ARWpost 

software.18 The resulting “computational grid” has a vertical resolution of 250-m (50-m) 

above (below) z = 1 km, with a top boundary of z = 20 km and a ground level populated 

with WRF-output 10-m horizontal winds and zero w. The MZ19 model integrates parcel 

positions using a second order Runge-Kutta (RK2) scheme with a 10-s computational time 

step. Gridded winds are interpolated to the parcel positions trilinearly in space; time 

interpolations from the two nearest WRF output times use advection correction (AC, Gal-

Chen 1982; Shapiro et al. 2015; MZ19), a technique that interpolates data in a reference 

frame that follows the mean flow, rather than from a fixed position as in traditional linear 

time interpolation (LI). More specifically, time interpolations use the ACW algorithm 

described in MZ19, where AC is used for scalars and w, while LI is used for the u- and v- 

components. Choice of ACW is motivated by the fact that Wilma’s inner-core horizontal 

winds (deep convective updrafts) remain relatively steady (translate considerable 

azimuthal distances; to be shown in section 5.3.2) between 5-min output times over the 

analysis period. Any backward trajectories arriving at the computational grid top or lateral 

boundaries are flagged and their integration is terminated early. Scalar variables 

interpolated to the 10-s trajectory positions (Table 5.1) are saved for analysis.  

 

																																																								
18	Documentation for the ARWpost software package is available at 
http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.9/users_guide_chap9.htm#_
ARWpost_3.	
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Table 5.1 Diagnostic variables interpolated from the postprocessed WRF grid during 
trajectory computations 

 Symbol                           Description                                                                                    Units                                                       

T                        temperature                                                                                              K 
p                        pressure                                                                                                 hPa 
qe                         equivalent potential temperature (Bolton 1980)                                     K 
qV                       water vapor mixing ratio                                                                    g kg-1 

qLIQ            combined liquid hydrometeor (cloud + rain water) mixing ratio       g kg-1 

qFRZ                             combined frozen hydrometeor (ice + snow + graupel) mixing ratio  g kg-1 

RH                     relative humidity (with respect to ice for T < 273.15 K)                         %  
HS                                 sensible surface heat flux                                                                  W m-2 
HL                         latent surface heat flux                                                                       W m-2                      

 

 

Fig. 5.2 (a) WRF-predicted z = 14 km vertical motion (w, shaded, m s-1) and horizontal 
wind vectors (m s-1) with z = 6 km w (2 m s-1 contoured in black) at 18:00. Green circles 
bound the annular region that backward trajectories are seeded from, as described in the 
text. (b) Number of trajectories in sub-samples of wMAX-8, wMAX-12, wMAX-16, wMAX-20, and 
wMAX-CB with at least one output data point contained within the 100-m vertical layer bin 
configuration used for the vertical momentum budget analysis in section 5.4.4, as shown 
on the y-axis.  
 

 

wMAX	> 20	m	s-1

16	<	wMAX	<	20	m	s-1

12	<	wMAX	<	16	m	s-1

8 <	wMAX	<	12	m	s-1	

wMAX	<	8	m	s-1
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5.2.3 Trajectory experiment design and analysis techniques 

For each WRF output time between 16:00 and 20:00, a set of 1,980 4-h backward 

trajectories is seeded from z = 14 km over the region where the eyewall updraft core flares 

outward, forming the roots of the main outflow. Seed points are positioned at 2º azimuthal 

intervals on concentric rings radially spaced every 2 km over a 20-km wide annulus 

centered on the z = 14 km RMW (Fig. 5.2a). Of all 97,020 backward trajectories, only the 

~ 45% that can be traced to the MBL - hereafter the MBL-Origin sample, are further 

analyzed. Herein the MBL is defined as the region below z = 0.5 km, which generally aligns 

with the azimuthally-averaged low-level inflow inside of r = 40 km over the analysis period 

(not shown). The remaining trajectories fall into two broad categories: (i) those entrained 

into updrafts from the midlevel eye, eyewall, or outer environment; and (ii) those 

originating from the outflow layer or higher levels.19 The MBL-Origin trajectories are 

further stratified into subsamples binned by wMAX, defined for each trajectory as its 

maximum w. These subsamples are respectively named wMAX-8, wMAX-12, wMAX-16, wMAX-

20, and wMAX-CB, for wMAX ≤ 8 m s-1, 8 m s-1 < wMAX ≤ 12 m s-1, 12 m s-1 < wMAX ≤ 16 m s-1, 

16 m s-1 < wMAX ≤ 20 m s-1, and wMAX > 20 m s-1. Herein we define CBs as any updrafts 

containing one or more wMAX-CB trajectories. Each MBL-Origin trajectory is assigned an 

“updraft period” running backward in time, beginning with the first 10-s output time for 

which w averaged over the next 1-min interval exceeds zero (possibly the seed point) and 

ending with the parcel reaching the z = 0.5 km level. 

 
 
 

																																																								
19	Trajectories that do not meet the MBL-Origin criterion may be useful for analyzing 
other TC processes and they will be reserved for a future study.  
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Table 5.2 Diagnostic variables computed at the parcel position from trajectory output 
variables after completion of trajectory integrations 

 Symbol                           Description                                                                                     Units                                                    
𝜌                        density                    kg m-3 

𝜃T                      virtual potential temperature                                                                   K 
qHYD            total hydrometeor mixing ratio (qLIQ + qFRZ)                                      g kg-1 

qTOT                    total water mixing ratio (qHYD + qV)                                                   g kg-1 

RH                     relative humidity (with respect to ice for T < 273.15 K)                        % 
VR                                 radial wind component                                                                        m s-1 

dEDGE    smallest distance to updraft edge among the four Cardinal directions  km 
DAVG                  mean updraft diameter                                                                           km  
qe,ENV     environmental qe (see section 2e)                                                             K 
RHENV                       environmental RH (see section 2e)             %                       
 

Table 5.2 lists additional diagnostic variables derived from trajectory output data. 

Perturbations from the azimuthal mean are denoted with the prime superscript and “360” 

subscript. For example, 𝜃T,NQUH
 = 𝜃T  - qT,NQU, where qT,NQU  is the azimuthally-averaged 

virtual potential temperature, interpolated linearly in time and bilinearly in space to the 

parcel (r, z) coordinates. All diagnostic variables are averaged over trajectory output times 

that fall within 250-m height bins k=1, kTOP spanning the z = 0.25 - 14 km layer. Mean 

profiles of any variable a for a given wMAX –binned subsample may be then computed as: 

   𝑎 𝑘 = 	 ¡k(�)Õ
kÖm

f
 ,    (5.1) 

where trajectories i = 1, … n belong to the subsample and contain at least one output data 

point within bin k, and 𝑎p(𝑘) is a along ith trajectory, averaged over bin k. Variance and 

standard deviation profiles of a are respectively given by 

    𝑎 𝑘 = 	 ¡k � �¡(�) �Õ
kÖm

f�L
             (5.2) 

and 

    𝑠¡ 𝑘 = 	 𝑎 𝑘 L/M.              (5.3) 
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Differences in 𝑎 𝑘  between different subsamples are evaluated for statistical significance 

at the two-sided 95% confidence interval using the Student’s-t test for independent samples 

(Wilks 2011, pp. 142-144).  The Pearson correlation coefficient 𝜌¡,�between variables a 

and b is computed as 

   𝜌¡,� 𝑘 = 	 ¡k(�)�¡(�) �k(�)��(�)Õ
kÖm

f�L �Ç(�)�~(�)
 .                       (5.4)       

5.2.4 Computation of vertical accelerations along trajectories 

 Parcel vertical accelerations Dw/Dt = )Ì
)}
+ 𝑢 )Ì

)+
+ 𝑣 �Ì

�-
+ 𝑤 )Ì

)/
 along backward 

trajectories are computed using 1-min centered time differences of w previously smoothed 

using a 2-min running mean20. The anelastic vertical momentum equation can be written 

as (Houze 1993 p. 36; Braun 2002; Fierro et al. 2012): 

 ]Ì
]}
≈ 	− L

Ø
)j�

)/
=X>

+ 𝑔 *Ù�

*Ù		
+ 𝜅 − 1 j�

j
− 𝑞Z\]H

E>

+ 	𝑚𝑖𝑥𝑖𝑛𝑔,  (5.5) 

where overbars (primes) denote horizontal averages over (perturbations from) a hydrostatic 

height-dependent horizontal base state, 𝑔 is the gravitational constant, 𝜅 = 0.286, and other 

symbols are defined in Tables 5.1 and 5.2. From left to right, the Eq. (5.5) forcing terms 

on Dw/Dt are the PGA, buoyant acceleration (BA), and subgrid-scale turbulent momentum 

mixing. The BA can be decomposed into three components: (i) thermal buoyancy g *Ù�

*Ù		
, (ii) 

a “pressure-buoyancy term” 𝑔 𝜅 − 1 j�

j
 that absorbs 𝑝H contributions to 𝜌H, and (iii) 

hydrometeor loading 𝑔𝑞Z\]H . Vertical acceleration profiles are generated for MBL-origin 

																																																								
20	Smoothing trajectory output w in this manner improves the agreement between the left 
and right-hand sides of Eq. (5.5), presumably because it helps smooth out spurious parcel 
w tendencies resulting from errors in the spatiotemporal interpolation of parcel winds 
from the model grid. 
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trajectories seeded over the 16:00-18:00 period using the methods described in section 

5.2.3, except that the vertical bin k width is reduced to 100 m to minimize the residual 

difference between parcel Dw/Dt and its forcing terms. Figure 5.2b shows the number of 

trajectories from each wMAX-binned subsample used for computing vertical acceleration 

statistics as a function of height.21 

Previous studies have used different basic-state definitions when computing the Eq. 

(5.5) right-hand terms from model output because of no unique definition of buoyancy 

(Zhang et al. 2000; Braun 2002; Fierro et al. 2012). Here, the hydrostatic base states for p, 

𝜃T and qHYD are defined in cylindrical (r, 𝜆, z) coordinates as their respective horizontal 

averages over the 180° azimuthal arc centered on the parcel – for example: 

 𝜃T 𝑟, 𝜆, 𝑧, 𝑡 =
	*Ù d,Þ,/,}

ßÖËàáâ
ßÖËláâ

fß
 ,  (5.6) 

where 𝜆 is measured in degrees counterclockwise and nj is the number of points used in the 

azimuthal sum. This definition rests on the assumptions that (i) nearby air radially inside 

(outside) of an eyewall air parcel should be warmer (cooler), due to the warm core 

structure; and (ii) the wavenumber-0 and -1 components of the VT and 𝜃T fields are in 

thermal wind balance. Braun (2002) similarly defined departures from the base state as 

wavenumber-2 and higher perturbations. As in Braun (2002), the base state hydrometeor 

mixing ratio is excluded in Eq. (5.5) since it contributes to hydrostatic balance between 𝜃T 

and 𝑝.  

																																																								
21	Statistics for all diagnostic variables other than the Eq. (5.5) terms use the full MBL-
origin sample. The relatively large computational expense incurred from computing the 
hydrostatic base state at all trajectory positions motivated use of the smaller trajectory 
sample size for vertical momentum budgets. 
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 The Fig. 5.3 schematic summarizes the numerical method used for computing the 

PGA along trajectories. First, hydrostatic base state pressures are defined using Eq. (5.6) 

applied to the pressure field at heights z ± 𝛿𝑧 relative to the parcel (r, 𝜆, z) position, where 

𝛿𝑧 = 500 m. Next, perturbation pressures 𝑝>EFGAH  and 𝑝EABFIH  are computed as the local p´ 

averaged over a 2° arc centered on the parcel over the z to z + 𝛿𝑧 and z to z – 𝛿𝑧 layers, 

respectively. Finally, we compute PGA = (𝑝>EFGAH  - 𝑝EABFIH )/𝜌𝛿𝑧. 

 

Fig. 5.3 Schematic illustrating the numerical technique used for computing the PGA. For 
a given parcel at coordinates (𝑟=>?@AB, 𝜆=>?@AB	, 𝑧=>?@AB), perturbation pressures 𝑝>EFGAH  
and 𝑝EABFIH  are computed as 6-gridpoint averages over the ± 1º arc surrounding 𝜆=>?@AB 
and the vertical layer of thickness 𝛿𝑧 = 500 m above and below  𝑧=>?@AB respectively. 
Overbars denote basic state pressures computed using Eq. (5.6) applied to pressure and p-
symbols denote local pressure values at gridpoints identified by subscripts. Therefore, 
𝑝>EFGAH  = (𝑝LH  + 𝑝MH  + 𝑝NH  + 𝑝OH  + 𝑝PH  + 𝑝=>?@ABH ) / 6 and 𝑝EABFIH  = (𝑝OH  + 𝑝PH  + 𝑝QH  + 𝑝RH  + 𝑝SH  + 
𝑝=>?@ABH ) / 6. 
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5.2.5 Updraft entrainment analysis 

 Previous theoretical and idealized modeling studies have identified two basic 

processes driving the entrainment of environmental air into cloudy updrafts: (i) turbulent 

mixing across the updraft outer edge; and (ii) local22 radial inflow into the updraft region 

as required by mass continuity to balance the updraft acceleration, i.e. “dynamic 

entrainment” (Houze 1993; Morrison 2017). For simplicity, it is often assumed that mixing 

is sufficiently rapid such that a cloudy “updraft region” can be treated as a homogenous 

mass of air parcels with a well-defined boundary differentiating it from a subsaturated 

environment23. Here we follow Jorgensen et al. (1985) and define an “updraft element” 

surrounding trajectory positions where w exceeds 0.5 m s-1 and RH exceeds 95%. Rather 

than attempt to quantify dynamic and turbulent mixing processes, we instead define four 

new variables along trajectories that impact the trajectory parcel entrainment rate, as shown 

schematically in Fig. 5.4: (i) dEDGE – the smallest distance in any Cardinal direction to the 

updraft element boundary; (ii) DAVG – the mean updraft element diameter; (iii) 𝜃" ,ENV – 

environmental 𝜃"; and (iv) RHENV – environmental RH. The latter two variables are 

averaged over a six-gridpoint line extending outward from dEDGE.  

																																																								
22	We use the term “local” here to describe lateral inflow into the updraft core driven by 
convective-scale mass continuity, which is different from the vortex-scale radial inflow 
that constitutes a portion of the TC secondary circulation. 
23	As discussed in Houze (1993) pp. 239-247, laboratory and field experiments have 
shown that mixing of cloudy air with its environment can occur in discrete “gulps” on 
slow enough timescales to render the updraft region thermodynamically inhomogenous to 
some degree. 
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Fig. 5.4 Schematic showing the basic parameters used to study the impacts of entrainment 
on trajectory updrafts. The green curve marks the outer boundary of the local updraft 
element, defined by w > 0 m s-1 and relative humidity > 95%. Distances d1, d2, d3, and d4 
are measured in the four Cardinal directions from the parcel position, denoted by the red 
“X” symbol, to the updraft element boundary. Symbols “dEDGE” and “DAVG” denote the 
smallest distance in any Cardinal direction to the updraft element boundary and the mean 
updraft element diameter, respectively. Environmental 𝜃" (𝜃" ,ENV)  and relative humidity 
(RHENV) are averaged along the blue dashed line segment.  
 
 
5.3 Analysis of convective burst structure and thermodynamics 
 
 We begin by examining the time evolution of CB updraft element “CB-E1”, shown 

in Figure 5.1 near its peak intensity at WRF prediction time 16:10. In the upper troposphere, 

the updraft is roughly 10 km wide and surrounded by subsidence currents, with the peak 

intensity of |w| > 5 m s-1 directed northwestward and southeastward (Fig. 5.1a). The 

Ld1Ld2

Ld4

Ld3

dEDGE = min(d1, d2, d3, d4)

DAVG = (d1 + d2 + d3 + d4) / 2

X
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northwestward-directed subsidence current originates near the tropopause, roughly 

denoted by the 375K isentrope (Fig. 5.1b), and it may contribute to the development of the 

upper-level warm core by entraining stratospheric air that adiabatically warms while 

descending (Zhang and Chen 2012; CZ13). A vertical cross section taken through CB-E1 

reveals a ~ 3 km-wide core of extreme w exceeding 30 m s-1 that extends over the z = 10-

14 km layer (Fig. 5.1b). The local potential temperature (𝜃) anomaly co-located with the 

updraft core may result from LHR exceeding adiabatic cooling. 

5.3.1 Three-dimensional trajectory 

To better understand the thermodynamics contributing to the extreme w found in 

Wilma’s CBs, let us follow the history of a parcel that passes through CB-E1 at 16:10, 

identified herein as Trajectory-CB1. Figures 5.5a and 5.5b show its three-dimensional path, 

beginning in the MBL at t = 14:00 and ending at its seed position at z = 14 km, t = 18:00. 

Between 14:00 and 15:40, the parcel remains in the MBL while spiraling cyclonically 

inward. After 15:40, Trajectory-CB1 accelerates upward monotonically, completing just 

one half circle transit around the western and southern eyewall before achieving its 30.6 m 

s-1 wMAX
 around z = 13 km, t = 16:10. By comparison, Trajectory-SC, which leaves the MBL 

at a similar time but is more representative of the background secondary circulation with 

wMAX = 8.9 m s-1, completes one and a half loops around the eyewall during ascent to z = 

14 km (Figs. 5.5c,d). Returning to Trajectory-CB1, we find a rapid upward deceleration 

after 16:10; by 16:15 its w approaches zero at z ~ 15.5 km. Thereafter the parcel translates 

cyclonically around the upper-level eyewall (Figs. 5.5a,b) while its w oscillates roughly 

sinusoidally between +/- 2 m s-1 with a ~ 45 min period (not shown) – possibly forced by 

convectively-generated gravity waves. One notable exception is a 5-min window after 
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16:39 when the parcel executes a sharp anticyclonic loop while descending from a z ~ 17.5 

km peak height (Figs. 5.5a,b) that it reached after having been lofted by a 4 m s-1 updraft 

(not shown). 

 

Fig. 5.5 (a) Three-dimensional and (b) x-y planar projection of Trajectory-CB1, color-
coded by qe (K). WRF prediction times (hh:mm format) for selected points along the 
trajectory described in the text are also shown in (a), with arrows in (b) pointing in the 
direction of parcel movement in WRF model time. Purple shading denotes the sum of latent 
and sensible ocean surface heat fluxes (W m-2) at 15:00. (c),(d) As in (a),(b) but for 
Trajectory-SC.  
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5.3.2 Parcel 𝜃" evolution 

A parcel’s 𝜃" is conserved under inviscid pseudoadiabatic ascent; however, for real 

TC updrafts it is not strictly conserved because Lagrangian 𝜃"	sources and sinks include 

the latent heat of fusion, cloud-radiative interactions, mixing, and ocean surface heat fluxes 

(Bolton 1980; Zhang et al. 2002). While transiting the MBL between 14:00 and 15:40, 

Trajectory-CB1 experiences a 2.96K 𝜃"increase. This agrees closely with the 2.79K ∆𝜃" 

value predicted by Liu et al. (1999) to result from upward ocean surface sensible and latent 

heat fluxes, using the parcel 𝜃", 𝑇, 𝑝, ∆T, ∆p, and ∆qv from 14:00-15:40 (see their Footnote 

1). Notably, the Trajectory-CB1 parcel moves over locally maximized ocean surface heat 

fluxes around 15:00 (Figs. 5.5a,b). In section 5.4.2 we will revisit the question of whether 

CB parcels, on average, experience higher ocean surface heat fluxes compared to the 

background secondary circulation prior to ascent.  

At 15:40, when the Trajectory-CB1 parcel ascends out of the MBL, we find it on 

the northwestern edge of the eyewall updraft core where the radial inflow is locally 

enhanced, as indicated by a green triangle in Figs. 5.6a,b. Inner-core MBL 𝜃" is maximized 

along the eye-eyewall interface, perhaps originating from the surface layer at the eye center 

and then being drawn into the eyewall updraft (Liu et al. 1999; Braun 2002). An azimuth-

height cross section, slanted outward to align with the r-z planar projection of Trajectory-

CB1 above the MBL, reveals the parcel to be near an updraft element “E1” that extends 

from the MBL upward to z ~ 2.5 km; E1 is also co-located with a local column of higher 

𝜃" air (Fig. 5.7a)24. Most columns in this cross section exhibit potentially unstable 

																																																								
24	While it is true that the azimuthal-height cross-section shown in Fig. 5.7a is taken 
several km radially inside of the Trajectory-CB1 location at 15:40, the parcel is still 
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conditions, i.e., with 𝜃" rapidly decreasing above the MBL, reaching a minimum around z 

= 4 km and increasing with height above (Fig. 5.7a). Although other TC modeling studies 

have documented a midtropospheric eyewall 𝜃" minimum (Liu et al. 1999; Braun 2002), 

the reader should note that for most azimuths, this cross section is taken just outside of the 

eyewall updraft core due to asymmetry in the latter (Fig. 5.7a-d). 

																																																								
moving radially inward at this time. By 15:45 the parcel has moved inside the 2-km wide 
region used for averaging the variables shown in Fig. 5.7b-f (not shown). 
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Fig. 5.6 (a) WRF-predicted t = 15:40 and z = 0.5 km qe (shaded, K), horizontal storm-relative flow vectors 
(m s-1) and vertical motion (w, black contoured for 1 and 2 m s-1, purple dotted contoured for -1 m s-1). Green 
triangle denotes the Trajectory-CB1 position, currently at z = 0.45 km. (b) As in (a) but with the z = 0.5 km 
p' field (shaded, hPa) and radial winds (green contoured for 2, 5 and 10 m s-1; magenta contoured for -10,-5 
and -2 m s-1). (c) and (d) As in (a) and (b) but for t = 16:00 and z = 3.25 km, with the current z = 3.27 km 
Trajectory-CB1 position. In (c) and (d), w is thin-black (thick-black) contoured for 2 (5) m s-1  and purple-
dotted contoured for -3/-1 m s-1; relative humidity (%) is shaded in (d). (e) and (f) As in (a) and (b) but for t 
= 16:10 and z = 12.75 km, with the current z = 12.83 km Trajectory-CB1 position. For (e) and (f), w (m s-1) 
is contoured (thin solid black, 2/5; thick solid black, 10/20/30; dotted purple, -4/-2) and (f) shows the z = 15 
km p' field (shaded, hPa). Dashed arc denotes the azimuthal-height section shown in Fig. 5.7. Letter labels 
E1 and CB-E1 denote the updraft elements discussed in the text. 

E1 E1

E1 E1

CB-E1 CB-E1
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Fig. 5.7 (a) Time series of the azimuth-height cross sections of WRF-predicted qe (shaded, K) and w (thin 
black contour for 1 m s-1; thick black contours for 5/10/15/20/25/30 m s-1; purple dotted contours for -1/-3 m 
s-1) with in-plane flow vectors (m s-1; vertical motions multiplied by 3) at 15:40. (b),(c),(d),(e),(f) As in (a) 
but for WRF prediction times 15:50, 15:55, 16:00, 16:05, and 16:10. The conical surface defined for this 
cross-section slopes outward from r = 21 km, z = 1 km to r = 24 km, z = 15 km, and all variables shown here 
are averaged over a 2-km wide radial band centered on the cross section. Letter labels E1 and CB-E1 denote 
the updraft elements discussed in the text, and the green triangle marks the position of Trajectory-CB1. 
 

CB-E1
CB-E1

E1
E1

E1 E1
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Trajectory-CB1 𝜃" decreases from 366 to 363 K over the next 25 minutes while the 

parcel ascends to z = 6 km (Fig. 5.5a), likely a consequence of some environmental 

entrainment. The parcel remains embedded within E1 as it rotates cyclonically with a phase 

speed close to the 35.6° (5 min-1) mean angular velocity obtained by averaging Vt  in the 

outwardly-sloping cross-section over 𝜆 = 120° – 360°, z = 0 – 6 km, t = 15:40-16:05 (Figs. 

5.6a-d and 5.7a-e). Between 15:40 and 15:50, E1 remains confined to the low-to-middle 

troposphere while gradually deepening (Figs. 5.7a,b). By 15:55, E1 has deepened – now 

extending through the full troposphere, although its intensity remains relatively modest 

(Fig. 5.7c). Meanwhile, the higher 𝜃" anomaly inside E1 grows upward while remaining 

rooted in the MBL (Figs. 5.7a-c); in some aspects, the evolution of E1 resembles Morton 

et al. (1956)’s analytical model of a plume growing above a steady buoyancy source 

(Morrison 2017). E1 therefore appears to “precondition” the local environment above the 

rising Trajectory-CB1 parcel with higher 𝜃" air relative to the midlevel mesoscale 

environment, where 𝜃" < 356 K; this may at least partially explain why Trajectory-CB1 

experiences significantly less 𝜃" reduction in the midtroposphere, compared to background 

secondary circulation trajectories such as Trajectory-SC (cf. 5.5a,c) and others (not shown) 

that are also saturated throughout ascent. We shall examine updraft entrainment more 

systematically in section 5.4.3 using the full trajectory sample.   

 E1 explosively intensifies between 16:00 and 16:05, particularly in the upper 

troposphere where peak w increases from < 5 m s-1 to > 25 m s-1 (Figs. 5.7e,f). Convective 

burst element “CB-E1” has been born. At 16:05 it extends from near the top of the MBL 

to above z = 16 km, tilting cyclonically downwind below z = 8 km and becoming vertically 

upright for higher levels (Fig. 5.7e). Over the next 5 minutes, as CB-E1 approaches its peak 
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intensity, the height of maximum w shifts upward from z ~ 11 km to z ~ 13 km while CB-

E1 becomes vertically aligned through the entire troposphere – perhaps a consequence of 

the lower (upper) portion being advected cyclonically downwind by a stronger (weaker) 

layer-mean VT (Figs. 5.7e,f). The Trajectory-CB1 parcel accelerates upward through the 

CB-E1 core between 16:05 and 16:10, ascending from z = 6 km to z = 13 km (Figs. 5.7e,f). 

The parcel’s 𝜃" increases by ~ 1 K over this period, likely due to a combination of (i) fusion 

LHR from ice-phase microphysical processes inside the parcel (Fierro et al. 2012; M15); 

and (ii) mixing with adjacent higher-𝜃" air previously warmed by fusion LHR in other 

parcels (Figs. 5.6e and 5.7e,f). 

 5.3.3 Parcel vertical momentum budget 

 The positive 𝜃" anomaly inside the intensifying CB-E1 relative to nearby areas at 

the same height (Figs. 5.6c,e and 5.7a-f) suggests that the aggregate mass of parcels 

comprising CB-E1 is thermally buoyant relative to the hydrostatic base state (section 5.2.4) 

and experiences upward acceleration. To confirm this, and to better understand the relative 

impacts of hydrometeor loading and the PGA, we now compute vertical acceleration terms 

from Eq. (5.5) along Trajectory-CB1, with a focus on the period of continuous parcel ascent 

through the z = 0.25 - 15.5 km layer.  

Figure 5.8a shows vertical profiles along Trajectory-CB1 of w, BA, PGA, as well 

as the thermal (g *Ù�

*Ù		
) and hydrometeor loading (g𝑞Z\]H ) contributions to the BA. We find a 

positive BA that increases nearly monotonically with height from the upper MBL (z = 0.25 

- 0.5 km) to a maximum value of ~ 250 m s-1 h-1 near z = 11.5 km except for a brief dip 

below zero around  z = 1.5 km. The Eq. (5.5) 	𝑔 𝜅 − 1 j�

j
	 term (not shown) is positive and 
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similar in magnitude to g *Ù�

*Ù		
 below z = 1.5 km - consistent with the parcel originating from 

a region of negative low-level p´ (Fig. 5.6b), whereas for higher levels it becomes 1-2 

orders of magnitude smaller than g *Ù�

*Ù		
. Although the g *Ù�

*Ù		
 and g𝑞ã-�H  terms are comparably 

strong within an order or magnitude, the downward-directed hydrometeor loading is 

insufficient to offset the very large thermal buoyancy anywhere between z = 2 km and z = 

15 km. Two positive BA spikes near z = 0.4 and z = 0.9 km, resulting from nearly equal ~ 

+15 m s-1 h-1 contributions from g *Ù�

*Ù		
,  𝑔 𝜅 − 1 j�

j
, and g𝑞ã-�H , appear to have lifted the 

parcel out of the MBL, given the generally negative PGA below z = 2 km. Between z = 3 

km and z = 12.5 km, the PGA is alternately positive and negative while remaining 

significantly weaker than the BA. Note, however, the sharp negative PGA spike in the 

upper troposphere, which we shall examine shortly. Figure 5.8b shows that the sum BA + 

PGA is in generally good agreement with Dw/Dt; the lower WRF vertical resolution in the 

upper troposphere (CZ11) may partially explain the greater residual above z = 8 km 

between the left- and right-hand sides of Eq. (5.5), excluding the mixing term.  
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Fig. 5.8 (a) BA (m-1 s-1 h-1; magenta line), with its thermal (m-1 s-1 h-1; orange line) and 
hydrometeor loading (m-1 s-1 h-1; green line) components, PGA (m-1 s-1 h-1;  blue line), and 
w (´ 10 m s-1; black line, all plotted as a function of height along a portion of Trajectory-
CB1. (b) As in (a), but with vertical acceleration Dw/Dt (m-1 s-1 h-1; light blue line) and the 
sum of the buoyant and vertical perturbation pressure gradient acceleration (m s-1 h-1; light 
orange line). (c) and (d) As in (a) and (b) but for Trajectory-SC. Note the different 
magnitudes of the budget terms between the two trajectories [see the horizontal axes 
between (a), (b); and (c), (d)].    
 

To better understand the physical origins of the Trajectory-CB1 vertical 

acceleration terms, let us examine the distribution of 𝜃TH , 𝑞Z\]H , and  p´ in an azimuthal-

height cross section through CB-E1 and its environment, shown in Figure 5.9. The large 
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positive 𝜃TH  and 𝑞Z\]H , co-located with the mid-to-upper level CB-E1 core (Figs. 5.9a,b), 

strongly suggest that LHR from condensation and fusion generates the positive deep-layer 

thermal buoyancy responsible for the parcel’s extreme wMAX (Fig. 5.8a). Unfortunately, 

microphysical heating tendency output variables are not available for this WRF prediction, 

and therefore we cannot further study the relative contributions of liquid-phase (i.e. 

condensation) and ice-phase (i.e. freezing, riming, and deposition) processes toward parcel 

𝜃TH .  

 

Fig. 5.9 (a) As in Fig. 5.7 but for WRF prediction time 16:05, with perturbation virtual 
potential temperature (qv´, shaded, K). (b) As in (a) but with perturbation total hydrometeor 
mixing ratio (qTOT´, shaded, g kg-1). (c) As in (a) but with perturbation pressure (p´, shaded, 
hPa). (d) As in (a), but for radial wind (VR, shaded, m s-1). All perturbation variables shown 
here are defined with respect to the hydrostatic base state (section 5.2.4).  
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Our finding of a comparatively weak PGA through much of this parcel’s ascent 

differs from Braun (2002), who computed an upward (downward) PGA that offset (nearly 

offset) a(n) downward (upward) BA within (above) the MBL along a trajectory rising 

through simulated Hurricane Bob (1991)’s eyewall (see his Fig. 17). Idealized simulations 

of upright nonrotating buoyant updrafts predict a downward-directed PGA opposing the 

BA (Markowski and Richardson 2010; Morrison 2016), provided that VWS – and therefore 

dynamic contributions to the p´ field - is small. Conceptually, this can be understood from 

a mass continuity perspective, where a positive p´ at the updraft top is needed to push 

surrounding air laterally outward and a negative p´ at the updraft bottom is needed to draw 

surrounding air inward to fill its wake. Using similar assumptions, Morrison (2016) 

developed an analytical updraft model in which the downward PGA magnitude is 

proportional to the updraft width-to-height ratio; thus it is possible that the full-

tropospheric depth of CB-E1 may have helped to keep the PGA relatively weak below z = 

12.5 km. Nevertheless, a p´ field consistent with Morrison’s (2016) analytical model 

surrounds the CB-E1 w > 25 m s-1 core, with positive (negative) p´ above (below) it (Fig. 

5.9c). This local p´  couplet generates the strongly negative PGA over the z = 12.5-15 km 

layer (confirmed by replotting Fig. 5.9c for 16:10, not shown) that forces rapid vertical 

deceleration of the Trajectory-CB1 parcel (Figs. 5.8a,b). The positive p´ anomaly found 

above and cyclonically downwind of CB-E1 (Figs. 5.6f, 5.9c) resembles the “meso-high” 

structures observed above continental mesoscale convective systems (Fritsch and Maddox 

1981), albeit on a smaller scale. It may be hydrostatically forced by a cold anomaly directly 

above it (cf. Figs. 5.1b and 5.6f), with the latter perhaps generated by adiabatic cooling in 

parcels overshooting the equilibrium level. Dynamic contributions to the p´ field around 
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CB-E1 may also result from the interaction of the updraft with the horizontal (Zhang et al. 

2000) and vertical (Rotunno and Klemp 1982) shear of VT, and they could be examined in 

a future study.  

By contrast, Trajectory-SC has a bimodal w profile, with maxima of ~ 5 m s-1 and 

~ 9 m s-1 near z = 5 km and z = 12 km, respectively (Fig. 5.8c). Comparing its vertical 

acceleration terms in the upper MBL (z = 0.25-0.5 km) with Trajectory-CB1, we find a 

similarly weak positive g *Ù�

*Ù		
. However, unlike Trajectory-CB1, MBL g𝑞Z\]H  is negative 

and MBL PGA is positive25 (cf. Figs. 5.8a,c). Over the z = 0.5 – 5 km layer, thermal 

buoyancy is positive but considerably weaker than that of Trajectory-CB1. As a result, the 

BA becomes negative over the z = 3-5.5 km layer due to g *Ù�

*Ù		
 being unable to offset g𝑞Z\]H , 

which helps to decelerate parcel w to near zero around z = 6 km (Fig. 5.8c). The recovery 

of upward motion at higher levels results in part from rapid hydrometeor unloading, given 

the modest thermal buoyancy in the upper troposphere. The left- and right-hand sides of 

Eq. (5.5) show fairly good agreement for this parcel (Fig. 5.8d). In several aspects, 

Trajectory-SC resembles the tropical oceanic squall line updraft trajectory shown in Fierro 

et al. (2012, see their Fig. 9); similarities include the PGA lifting the parcel out of a heavy-

precipitating portion of the MBL and the bimodal w profile. Interestingly, both Trajectory-

SC and Trajectory-CB1 begin their eyewall ascent with similarly high 𝜃" (cf. Figs. 5.5a,c). 

It is possible that the weaker mid-to-upper level thermal buoyancy in the former (cf. Figs. 

5.8a,c) results at least in part from greater dilution by low-𝜃" environmental air, as 

																																																								
25	The Eq. (5.5) “pressure-buoyancy term” is also weakly positive in the MBL, averaging 
around 8 m s-1 h-1 (not shown). 
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discussed in section 5.3.2 (cf. Figs. 5.5a,c). 

5.4 Trajectory updraft statistics  

In the preceding section we compared vertical acceleration profiles between two of 

Wilma’s updraft parcels: one from an intense CB and the other representative of the 

background secondary circulation. We found that the CB parcel’s extreme ~ 30 m s-1
 wMAX  

results from large thermal buoyancy exceeding 200 m s-1 h-1 in the middle and upper 

troposphere. Thermal buoyancy in the secondary circulation parcel, by contrast, is 

considerably smaller, generally < 50 m s-1 h-1. Although both parcels possess similar 𝜃" and 

thermal buoyancy while ascending out of the MBL, the secondary circulation parcel 

experiences more substantial 𝜃" reduction in the midtroposphere, suggesting that the 

entrainment of cooler and/or drier environmental air may have prevented it from achieving 

large thermal buoyancy. We now determine whether these results apply more generally to 

Wilma’s CBs, using data from all 43,347 MBL-origin backward trajectories stratified by 

wMAX into five subsamples per the procedure described in section 5.2.3. 

 5.4.1 General thermodynamic and microphysical characteristics 

Figure 5.10a shows 𝑤NQUH (k) profiles for the wMAX-8, wMAX-12, wMAX-16, wMAX-20, 

and wMAX-CB trajectory subsamples, where 𝑤NQU,pH (k) is the perturbation from azimuthally 

averaged w(r,	𝜆, z, t) along the ith trajectory, averaged over 250-m layer k, and the overbar 

denotes an average over all trajectories in the subsample. Note that the “360” subscript 

used for primed variables emphasizes that the perturbation is computed from the azimuthal 

average; primed variables without this subscript described elsewhere in this study are 

perturbations from the hydrostatic base state (section 5.2.4). Figure 5.10a also shows the 

number of trajectories in each subsample. The largest group, wMAX-12 (19296), comprises 
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~ 45% of all MBL-origin updrafts, and we shall consider it representative of the 

background secondary circulation. Above z = 3 km 𝑤NQUH (k) becomes larger with increasing 

subsample wMAX, and the 𝑤NQUH (k) spread among subsamples becomes maximized in the 

upper troposphere. Interestingly, this trend reverses over the z = 1.5 – 2.5 km layer, where 

wMAX-CB trajectories have statistically significant smaller 𝑤NQUH (k) compared to wMAX-12 

trajectories. The wMAX-16, wMAX-20, and wMAX-CB 𝑤NQUH (k) profiles are all unimodal with 

upper tropospheric maxima. These results imply that during early RI, localized stronger 

updrafts embedded in Wilma’s eyewall tend to peak in the upper troposphere, consistent 

with the cumulative contoured frequency by altitude diagram (CCFAD) analysis of M15 

(see their Fig. 8). On the other hand, the wMAX-8 and wMAX-12 𝑤NQUH (k) profiles are bimodal, 

like the Trajectory-SC1 w profile (cf. Figs. 5.8c, 5.10a). Previous modeling studies (Fierro 

et al. 2009; Wang 2014; M15) and observations (Hildebrand et al. 1996; May and 

Rajopadhyaya 1996) have found similar bimodal structures in modestly strong tropical 

oceanic convective updrafts, generally attributing the midlevel minimum to hydrometeor 

loading and enhanced static stability and the upper-level maximum to hydrometeor 

unloading and fusion LHR.  
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Fig. 5.10 Vertical profiles of the mean (a) perturbation vertical motion w´360 (	m s-1), (b) perturbation virtual 
potential temperature 𝜃T,NQUH  (K), (c) perturbation liquid hydrometeor mixing ratio q´LIQ,360 (g kg-1), (d) 
perturbation frozen hydrometeor mixing ratio q´FRZ,360  (g kg-1), (e) water fallout percentage, and (f) percent 
of time over each 250-m vertical layer that parcel experiences downward motion. Mean values are computed 
for each sub-sample of updraft backward trajectories binned by wMAX, as shown by arrows in (a), with the 
number of trajectories for each sub-sample given inside parentheses. Bracketed lines enclose vertical layers 
where the wMAX-12 and wMAX-CB sample mean differences are statistically significant at the 95% level. 
Perturbation variables shown in (a)-(d) are computed with respect to the azimuthal mean. 

8 <	wMAX	<	12	m	s-1	(19296)	
wMAX	<	8	m	s-1 (5139)	

16	<	wMAX	<	20	m	s-1 (4620)

wMAX	> 20	m	s-1 (1170)

12	<	wMAX	<	16	m	s-1 (13122)
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The wMAX-16, wMAX-20 and wMAX-CB mean virtual potential temperature anomaly 

𝜃T,NQUH (k) profiles have similar shapes to their 𝑤NQUH (k), with respective upper-tropospheric 

maxima of 0.8, 1.3, and 2.0K about 1 km lower than the heights of their respective 

maximum 𝑤NQUH (k) (Fig. 5.10b). By comparison, the wMAX-8 and wMAX-12 𝜃T,NQUH (k) profiles 

are flatter, with broad maxima of ~ 0.5 K extending from the melting level to z = 11 km. 

Absolute differences in 𝜃T,NQUH (k) between the subsamples are smaller below the melting 

level; in fact, 𝜃T,NQUH (k) is statistically significantly smaller for wMAX-CB compared to wMAX-

12 over the z = 2.4 – 4.7 km layer (Fig. 5.10b). The tendency for 𝑤NQUH (k) and  𝜃T,NQUH (k) to 

increase with subsample wMAX above the melting level is consistent with positive anomalies 

of supercooled liquid water 𝑞BqäH (k) (Fig. 5.10c) and frozen hydrometers 𝑞å?½H (k) (Fig. 

5.10d) also increasing with subsample wMAX above the melting level. We also see that on 

average, the stronger updrafts experience greater hydrometeor retention above the melting 

level (Fig. 5.10e).  

The results shown in Figs. 5.10a-f imply a “positive feedback” mechanism whereby 

stronger updrafts above z = 3 km loft greater quantities of supercooled water above the 

melting level, which in turn increase parcel thermal buoyancy through fusion LHR (Fierro 

et al. 2009, 2012; M15), leading to greater vertical accelerations in the upper troposphere. 

Next, we ask: what low- and mid-level processes give some parcels – including CBs - 

greater updraft speeds as they approach the melting level, compared to the background 

secondary circulation? 

  



	

	 	 	160	

5.4.2 Boundary layer thermodynamics 

 Can a parcel’s wMAX be statistically related to its MBL thermodynamic history? At 

RI onset, Wilma’s highest inner-core total (latent + sensible) ocean surface heat fluxes (H) 

are found in the northern eyewall, where surface VT is strongest (Fig. 5.11a). Two hours 

later, maximum H has become symmetrically distributed throughout the eyewall, 

consistent with the axisymmetrization of Wilma’s surface VT (Fig. 5.11b). Here we 

consider only the 31,243 MBL-Origin trajectories that remain in the MBL for at least one 

hour prior to ascent but which are otherwise stratified by wMAX in the same manner (section 

5.2.3). Figure 5.12 shows time series of subsample 𝜃"(𝑡), 𝐻(𝑡), and height 𝑧(𝑡) during the 

final hour of parcel transit through the MBL, where overbars denote averages over all 

subsample trajectories t minutes prior to exiting the MBL. Compared to wMAX-12 parcels, 

the wMAX-CB parcels have statistically significant higher 𝜃"(t) during their final 15 minutes 

in the MBL, statistically significant higher 𝐻(t) over their final 8 minutes in the MBL, and 

statistically significant lower 𝑧(t) over most of their final hour in the MBL (Figs. 5.12a,b). 

These results support CZ13’s finding that higher SSTs contribute, generally, to higher 

numbers of CBs in Wilma. However, the lack of a more systematic relationship between 

wMAX, MBL 𝜃"(t), and MBL 𝐻(t) suggests that processes above the MBL might also be 

important to differentiating stronger updrafts from the background secondary circulation.  
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Fig. 5.11 (a) WRF-predicted total (latent + sensible) ocean surface heat flux (W m-2) and 
10-m horizontal flow vectors (m s-1) averaged over the 1-h period ending at 15:00. (b) As 
in (a), but with black dots denoting the positions where wMAX -20 and wMAX-CB trajectories 
ascend above z = 0.5 km, and white lines showing x-y planar projections of these 
trajectories over the previous 1-h period. Only wMAX-20 and wMAX-CB trajectories ascending 
above z = 0.5 km over the +/- 5 min period surrounding 15:00 are plotted here. (c),(d) As 
in (a),(b) but for (c) model fields averaged over the 1-h period ending at 17:00 and (d) 
wMAX-20 and wMAX-CB updraft backward trajectories ascending above z = 0.5 km at 17:00 
+/5 min. 
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Fig. 5.12 (a) Mean qe (K) for sub-samples of backward trajectories binned by wMAX, plotted 
as a function of time prior to their ascent above z = 0.5 km. (b) As in (a) but for mean total 
(latent + sensible) ocean surface heat flux (W m-2; solid) and parcel height (m; dotted). 
Solid- or dot-bracketed lines denote time intervals where the difference between the wMAX-
12 and wMAX-CB sample mean total surface heat flux (parcel height) are statistically 
significant at the 95% level.  
 

wMAX	>	20	m	s-1

16	m	s-1 < wMAX	< 20	m	s-1

12	m	s-1 < wMAX	< 16	m	s-1

8 m	s-1 < wMAX	< 12	m	s-1

wMAX	<	8	m	s-1
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 5.4.3 Environmental air entrainment 

 Recall from section 5.3.2 that the CB parcel (i.e. Trajectory-CB1) experienced a ~3 

K reduction in 𝜃" while ascending from the MBL to z = 6 km, whereas the secondary 

circulation parcel (i.e. Trajectory-SC) experienced an ~8 K 𝜃" decrease over the same layer 

despite having ~2 K higher 𝜃" when exiting the MBL. This leads us to ask: (i) are Wilma’s 

CB updrafts, on average, characterized by less parcel 𝜃" dilution compared to the 

background secondary circulation? and (ii) if so, what processes might “protect” the CB 

parcels from being mixed with lower-𝜃" air? Figure 5.13a shows 𝜃"(k) profiles for the 5 

wMAX-binned subsamples. At z = 1 km, 𝜃" increases with wMAX, although 𝜃" for wMAX-CB 

is only ~0.5 K larger than that of wMAX-12. Although 𝜃"(k) decreases with height toward 

the melting level for all subsamples, the spread in 𝜃"(k) among subsamples also increases 

with height, such that melting level 𝜃" for wMAX-CB is ~2.3 K larger than that of wMAX-12. 

Above the melting level 𝜃"(k) increases with height for all subsamples, likely due to fusion 

LHR (Fierro et al. 2009, 2012; M15).  
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Fig. 5.13 (a) As in Fig. 5.10, but for the subsample mean qe (K). (b) As in (a), but for 
subsample mean radial wind interpolated to the parcel position (m s-1). (c) As in (a), but 
for the subsample mean smallest distance in any Cardinal direction to the updraft element 
boundary (dEDGE, km). (d) As in (a), but for the subsample mean updraft element diameter 
(DAVG, km). (e) As in (a), but for subsample mean environmental relative humidity (RHENV, 
%). (f) As in (a), but for subsample mean environmental qe (𝜃" ,ENV, K). See section 5.2.5 
for the definitions of RHENV and 𝜃" ,ENV. 
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Fig. 5.14 (a) Histogram showing the number of updraft trajectories from the wMAX-CB sub-
sample (shaded), binned by distance to the updraft edge (km), as shown on the x-axis, and 
by height (km), as shown on the y-axis. Black contours show the number of updraft 
trajectories from the wMAX-12 sub-sample, binned in the same manner. 
 

These results confirm that CB parcels, on average, begin with higher 𝜃" in the MBL 

and experience less 𝜃" reduction while ascending into the upper troposphere, compared to 

the background secondary circulation. Might this result from lower rates of environmental 

air entrainment into CB parcels? It is worth reminding the reader that this study treats 

updrafts as aggregations of adjacent parcels that are distinguished from the surrounding 

environment by their having w > 0.5 m s-1 and RH > 95% (section 5.2.5). We assume that 

the updrafts are sufficiently horizontally homogenous, such that mixing with the 

environment modifies parcel thermodynamic properties much more strongly compared to 

mixing with adjacent updraft parcels. Additionally, we assume that parcel mass  
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exchange with the environment along trajectories is inversely proportional to the smallest 

distance from the parcel to the updraft edge (dEDGE, see section 5.2.5). Figure 5.13c shows 

that the wMAX-CB trajectories have statistically significant larger dEDGE(k) compared to 

wMAX-12 trajectories over the z = 3-11 km layer, with the largest absolute difference in their 

dEDGE(k) being found over the z = 3-7.5 km layer. Examining how the histogram of wMAX-

CB and wMAX-12 trajectories binned by dEDGE varies with height in Fig. 5.14, we find that 

the low-level distribution peaks at dEDGE = 1-2 km for both wMAX-CB and wMAX-12. 

However, the z = 4.5-8.5 km layer histogram peak shifts to dEDGE = 2-3 km for wMAX-CB 

while remaining at dEDGE = 1-2 km for wMAX-12. Figure 5.13d shows that the smaller 

dEDGE(k) in wMAX-12 is not merely a consequence of these parcels being located on the outer 

edge of stronger updraft cores; rather, compared to CB parcels they belong to narrower 

updrafts, on average, over the z = 4-12 km layer. These results agree with Morrison (2017), 

who used idealized WRF simulations to show that narrower (wider) updrafts experience 

more (less) dilution, leading to greater (less) reduction in buoyancy. Although our analysis 

has focused on the special characteristics of Wilma’s CBs, the tendency for subsample 

|∂𝜃"/∂z| to become smaller with wMAX while dEDGE and DAVG become larger with wMAX over 

the z = 4-5.5 km layer (Figs. 5.13a,c-d) suggests that Wilma’s eyewall updraft intensity 

may generally depend on the environmental air entrainment rate, which in turn may be 

partially governed by updraft width.  

It is reasonable to expect that a parcel’s 𝜃" dilution rate depends not only on the 

rate of mass exchange with the environment but also on the magnitude of the 𝜃" difference 

between the parcel and the environment (Morrison 2017). We find that wMAX-CB 

trajectories have statistically significant higher mean environmental 𝜃" (𝜃" ,ENV, section 
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5.2.5) compared to wMAX-12 trajectories above z = 3.5 km (Fig. 5.13e). Given that 

𝜃" − 𝜃",A^G(k) > 0 in the low-to-middle troposphere for all trajectory subsamples (not 

shown), it is possible that a higher ambient 𝜃" environment also contributes to the better 

𝜃" conservation in CB parcels compared to background ascent (cf. Figs. 5.13a,e). 

Somewhat paradoxically, 𝑅𝐻A^G(k) becomes lower with increasing wMAX, most markedly 

in the midtroposphere (Fig. 5.13f). Nevertheless wMAX-CB 𝑅𝐻A^G(k) still exceeds 80% for 

all heights. Therefore, the higher midlevel 𝜃",A^G(k) for wMAX-CB relative to wMAX-12 must 

result from the former trajectories, on average, having a warmer (i.e., higher-𝜃) 

environment (cf. Figs. 5.13e,f). 

During the trajectory analysis period, Wilma’s midlevel eyewall is characterized 

by a negative radial 𝜃" gradient, with higher 𝜃" air pooled along the inner edge (Fig. 5.6c). 

Liu et al. (1999) first showed how the radial wind VR could vary substantially with azimuth 

in a TC eyewall, with downdrafts generally aligned with local radial inflow (see their Fig. 

10). Figure 5.9d shows a similar pattern in Wilma’s eyewall; note how CB-E1 is co-located 

with anomalous radial outflow (i.e. positive VR) exceeding 2 m s-1 through the depth of the 

troposphere, which suggests that outward advection of higher-𝜃" air may have helped to 

locally enhance environmental 𝜃" near parcels rising through its updraft core (cf. Figs. 5.6c, 

5.7e and 5.9d). In support of this hypothesis, we find that wMAX-CB parcels are 

characterized by anomalous positive 𝑉?(k) above z = 3 km that is statistically significantly 

larger than the wMAX-12 𝑉?(k) (Fig. 5.13b). The above results therefore suggest two factors 

that may explain the smaller midlevel 𝜃" dilution rates characteristic to CB parcels: (i) 

reduced mixing with the environment due to wider updrafts and (ii) CBs tending to develop 

in higher local 𝜃" environments with anomalous radial outflow. However, a more rigorous 
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quantitative analysis of entrainment in TC eyewall updrafts – perhaps using passive tracer 

variables - warrants future study. 

 5.4.4 Statistical vertical momentum budget 

Finally, let us extend the section 5.3.3 vertical momentum budget analysis to the 

full trajectory sample. Figure 5.15a shows that 𝐵𝐴(k) increases with subsample wMAX over 

the z = 2-9 km layer. Between z = 1.5 km and the melting level, wMAX-12 (wMAX-8) have 

very small (negative) 𝐵𝐴(k) and positive 𝑃𝐺𝐴(k). Above the melting level, all subsamples 

have positive 𝐵𝐴(k) and negative 𝑃𝐺𝐴(k) (Fig. 5.15a), consistent with idealized updraft 

simulations with minimal dynamic contributions to the 𝑝H field (Markowski and 

Richardson 2010; Morrison 2016). Interestingly, all subsamples have a similar 𝑃𝐺𝐴(k) 

magnitude between the melting level and z = 10.5 km. As a result, 𝐵𝐴(k) and 𝑃𝐺𝐴(k) nearly 

cancel for wMAX-8 and wMAX-12, consistent with their near zero 𝐷𝑤/𝐷𝑡(k) while |𝐵𝐴(k)| > 

|𝑃𝐺𝐴(k)| for the stronger updraft groups, consistent with their positive 𝐷𝑤/𝐷𝑡(k) (cf. Figs. 

5.15a,b). For individual trajectories, BA(k) and PGA(k) are generally anti-correlated over 

a deep layer (Figs. 5.16a,b), and a scatterplot of z = 10 km BA versus PGA further shows 

that BA + PGA > 0 for most wMAX-CB trajectories but for only ~ 50% of wMAX-12 

trajectories (Fig. 5.16b).  
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Fig. 5.15 (a) Vertical profiles of trajectory subsample mean BA (solid lines, m s-1 h-1) and 
PGA (dotted lines, m s-1 h-1), color coded by subsample wMAX range as in Fig. 5.10. (b) As 
in (a), but for subsample mean parcel vertical acceleration Dw/Dt (solid lines, m s-1 h-1) and 
sum of the subsample mean BA and PGA (dotted lines, m s-1 h-1). (c) As in (a), but for 
subsample mean thermal buoyancy 𝑔𝜃TH /𝜃T (solid lines, m s-1 h-1). (d) As in (b) but for 
subsample mean hydrometeor loading 𝑔qHYD´ (solid lines, m s-1 h-1). Dashed black line 
denotes the approximate melting level. Bracketed solid (dotted) lines in (a),(c),(d) [(a)] 
show height intervals over which differences in the wMAX-12 and wMAX -CB mean BA, 
𝑔𝜃TH /𝜃T, and 𝑔qHYD,´ respectively, (PGA) are statistically significant at the 95% level.       
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Fig. 5.16 (a) Pearson correlation coefficient between the BA and PGA (𝜌E>,=X>) plotted 
for each wMAX-binned subsample as a function of height, with lines colored by subsample 
wMAX range as in Figs. 5.10 and 5.15. (b) Scatterplot of BA versus PGA at z = 10 km for 
wMAX-12 (light blue dots) and wMAX-CB (magenta triangles). (c) As in (a) but for the 
correlation coefficient between thermal buoyancy (THM) and hydrometeor loading (HYD) 
(𝜌YZ[,Z\]). (d) As in (b) but for the z = 8 km scatterplot of THM and HYD. Trajectories 
to the right of the dashed line in (b) have BA + PGA > 0 and trajectories to the right of the 
dashed line in (d) have THM + HYD > 0. 
 

How do the relative contributions of thermal buoyancy and hydrometeor loading to 

the BA change with increasing wMAX? Figure 5.15c shows that subsample mean 𝑔 *Ù�

*Ù		
(k) 

becomes more largely positive with increasing wMAX over the z = 4-14 km layer, most 
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markedly between the melting level and z = 14 km. In the lower troposphere, between z = 

1.5 and z = 3 km, wMAX-CB trajectories are distinguished from all others by their larger 

positive 𝑔 *Ù�

*Ù		
(k), consistent with the fact that wMAX-CB trajectories are also distinguished 

from all others by their higher 𝜃"(t) upon exiting the MBL (cf. Figs. 5.12a and 5.15c). 

Another interesting CB trajectory characteristic is their statistically significant smaller 

𝑔𝑞Z\]H (k) magnitude relative to wMAX-12 trajectories over the z = 3-5 km layer (Fig. 5.15d). 

Furthermore, the increasing BA with wMAX among the remaining four subsamples over the 

z = 2-4 km layer primarily results from |𝑔𝑞Z\]H (k)| decreasing with wMAX, since their 

respective 𝑔 *Ù�

*Ù		
(k) are quite similar (cf. Figs. 5.15a,c,d). These results suggest that local 

minima in lower-to-middle tropospheric hydrometeor loading such as those shown in Fig. 

5.9b may help to differentiate the parcels that ultimately develop stronger upper-

tropospheric wMAX from others with similar thermal buoyancy. Above the melting level, 

individual trajectory 𝑔 *Ù�

*Ù		
(𝑘)	and 𝑔𝑞Z\]H (k) become more strongly anti-correlated with 

increasing wMAX, which makes intuitive sense given that stronger updrafts loft greater 

quantities of hydrometeors above the melting level, resulting in greater fusion LHR from 

ice-phase microphysical processes (cf. Figs. 5.15d and 5.16c,d). Nevertheless, positive 

𝑔 *Ù�

*Ù		
(k) still outweighs negative 𝑔𝑞Z\]H (k) for most CB trajectories in the upper 

troposphere, resulting in a positive BA (cf. Figs. 5.15a and 5.16d). 
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5.5 Summary and concluding remarks 

This chapter has investigated the three-dimensional structure and thermodynamics 

of Hurricane Wilma (2005)’s CBs relative to their background secondary circulation from 

a Lagrangian perspective. For this purpose, we ran 97,020 4-h backward trajectories using 

winds output from a Wilma (2005) WRF prediction, which are seeded from its upper-

tropospheric eyewall over a 4-h period shortly following RI onset. Of the 97,020 backward 

trajectories, the ~ 45% originating in the MBL are binned by wMAX  and saved for analysis 

in this study. 

 First, we compared an intense CB trajectory, with ~ 30 m s-1 wMAX, against a 

background secondary circulation trajectory in terms of their three-dimensional structure, 

𝜃" tendencies, and vertical momentum budgets. Key findings are:  

• The CB parcel ascends from the MBL to z = 14 km in ~ 31 minutes, completing 

one half circle around the eyewall. By contrast, the secondary circulation parcel 

ascends the same vertical distance over ~ 83 minutes, completing 1.5 circles around 

the eyewall. 

• Both the CB and secondary circulation parcels exit the MBL with high 𝜃" - 366 K 

and 368.5 K, respectively. Although both parcels experience some reduction in 𝜃" 

while ascending to the melting level followed by 𝜃" recovery in the upper 

troposphere, the low-to-middle tropospheric 𝜃" decline is significantly smaller for 

the CB parcel (~ -3 K) compared to the secondary circulation parcel (~ -8 K). 

• A weakly positive BA lifts the CB parcel of the MBL. This positive BA becomes 

stronger with height into the upper troposphere, on account of positive thermal 

buoyancy more than offsetting hydrometeor loading – the former peaking at ~ 330 
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m s-1 h-1 near z = 8 km. As a result, w increases nearly monotonically with height 

toward a z ~ 13 km wMAX. A strongly negative PGA rapidly decelerates w at higher 

levels. 

• The secondary circulation parcel originates in a heavy-precipitating portion of the 

MBL, and a positive PGA helps to lift it into the eyewall free troposphere. Unlike 

the CB parcel, thermal buoyancy remains mostly positive but much weaker 

throughout ascent, generally < 50 m s-1 h-1. Increasing hydrometeor loading, 

together with a negative PGA, offsets the weak positive thermal buoyancy as the 

parcel approaches the melting level, resulting in deceleration to near zero w. Rapid 

hydrometeor unloading above the melting level helps to accelerate this parcel 

vertically towards its upper-level wMAX. 

           Next, we compared all CB trajectories against all secondary circulation trajectories 

– as well as all intermediate-strength updrafts - in terms of their respective mean 𝜃", vertical 

momentum budgets, as well as other variables expected to impact the BA and 𝜃" 

conservation under saturated conditions. Wilma’s CB parcels were most strongly 

distinguished from the secondary circulation by their (i) higher total (latent + sensible) heat 

fluxes from the ocean surface during their last 8 minutes transiting the MBL prior to ascent; 

(ii) higher 𝜃"	during their last 15 minutes transiting the MBL prior to ascent; (iii) greater 

𝜃" conservation (i.e., less 𝜃" reduction in the low-to-middle troposphere); (iv) belonging 

to wider updraft elements, especially in the midtroposphere; (v) updraft elements being 

surrounded by locally higher environmental 𝜃"; (vi) reduced hydrometeor loading over the 

z = 3-5 km layer; (vii) larger thermal buoyancy above the melting level; and (viii) higher 

supercooled liquid water and frozen hydrometeor mixing ratios above the melting level. 
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     These results suggest that Wilma’s CBs are rooted in portions of the MBL with 

locally enhanced 𝜃" and ocean surface heat/moisture fluxes. They support CZ13, who 

found that reducing SSTs26 by 1 ºC significantly reduces Wilma’s CB activity, upper level 

warming, and RI rate. They also support some aspects of Emanuel (1986, 1997)’s WISHE 

hypothesis – namely, that wind-induced ocean surface heat and moisture fluxes provide the 

thermodynamic heat source driving TC intensification. However, in identifying localized 

stronger updrafts (i.e., CBs) that are positively buoyant relative to the eyewall background 

state, this study supports other recent work (Heymsfield et al. 2001; Braun 2002; and Eastin 

et al. 2005a,b) in disagreement with WISHE’s assumption that eyewall ascent is slantwise 

moist neutral everywhere. CZ13 and M15 also showed how CB compensating subsidence 

may have contributed to Wilma’s upper level warm core development and resulting PMIN 

intensification – a mechanism not accounted for in WISHE.  

      We have also identified two processes that may have helped differentiate Wilma’s 

CB parcels from background secondary circulation parcels leaving the MBL with similarly 

high 𝜃": midlevel entrainment and hydrometeor loading. Compared to the wMAX-12 

trajectories, the smaller CB parcel 𝜃" reduction between z = 3 km and the melting level 

suggests reduced mixing with the lower-𝜃" eyewall midtropospheric air, given that 𝜃" is 

conserved under inviscid pseudoadiabatic ascent. This is consistent with CB updraft 

elements, on average, being wider and having higher local environmental 𝜃" compared to 

wMAX-12 updraft elements over the z = 4-6 km layer. We showed how (i) prior development 

																																																								
26	Technically speaking, ocean surface heat and moisture fluxes are proportional to the 
air-sea thermodynamic disequilbrium, which depends not only on SST but also on the 
temperature, pressure, and water vapor mixing ratio of the atmospheric surface layer. 
They also strongly depend on surface wind speeds, as shown in Fig. 5.11.	
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of a plume-like updraft structure and (ii) warm 𝜃" advection by local radial outflow may 

have “preconditioned” the environment above the rising CB parcel with higher 𝜃" air. In 

the midlevels, the CB parcels’ higher mean 𝜃" relative to the background ascent is 

consistent with their higher mean thermal buoyancy. Higher midlevel thermal buoyancy, 

together with less hydrometeor loading in the z = 3-5 km layer, is consistent with CB 

parcels having stronger midlevel Dw/Dt relative to the background ascent. Wilma’s CBs 

become most thermodynamically distinct from the background secondary circulation, in 

terms of their enhanced thermal buoyancy and w, in the upper troposphere. This is 

consistent with our finding that CBs, on average, are distinguished from the background 

ascent by their stronger midlevel updrafts that loft larger quantities of hydrometeors above 

the melting level, the latter in turn enhancing upper-tropospheric LHR from ice-phase 

microphysical processes.  

 As for any case study, future work is needed in order to determine how generally 

these results apply to CBs in other TCs. Hurricane Wilma (2005) may be considered a 

“prototype case” for TCs undergoing extreme RI under near-ideal environmental 

conditions. It may be particularly worthwhile to investigate how VWS affects CB structure 

and thermodynamics. Given the important role that CBs appear to play in TC 

intensification, it is necessary to develop a more complete understanding of the inner-core 

processes favoring their development.  
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Chapter 6. Summary, Concluding Remarks and Future Work 

 

6.1 Summary and concluding remarks 

 This dissertation has investigated the atmospheric processes governing two TC 

phenomena that operational NWP models still struggle to predict: climatologically unusual 

motion and RI. In part, we are motivated to develop a more complete physical 

understanding of nature’s most powerful storms, given our naturally curious nature as 

scientists. More importantly, we contend that better scientific understanding can lead to 

more accurate public forecasts. Recent studies have shown how TC unusual motion and RI 

may occur more frequently in the Atlantic and western Pacific basins than previously 

thought (Qin et al. 2016; Landsea and Cangialosi 2018; Zhang et al. 2018). TC forecasters 

are commonly faced with conflicting NWP guidance between different global deterministic 

models and between different ensemble members. For these situations, the forecasters’ 

scientific understanding can be important in helping them to determine which models are 

better handling the current atmospheric state. When combined with retrospective case 

studies, an improved physical understanding of TC processes should also help pinpoint the 

source of NWP model errors, such as data assimilation and physical parameterization 

schemes. 

 Our chapter 2 analysis of unusual TC motion focused on Hurricane Joaquin (2015), 

which followed a particularly rare hairpin-shaped clockwise looping track, initially 

southwestward into the Bahamas and then back northeastward towards Bermuda. Most 

operational model forecasts, with the notable exception of the ECMWF, struggled to 

maintain Joaquin’s southwestward motion and turned the storm first westward and then 
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eventually northwestward toward the U.S. coast. We applied the Galarneau and Davis 

(2013) TC motion error budget equation to two representative GFS forecasts, initialized at 

1200 UTC on 29 and 30 Sep, to determine to the extent to which the GFS failure to maintain 

Joaquin’s early southwestward motion resulted from errors in its representing (i) the large-

scale steering environment or (ii) the size and/or depth of the TC vortex. For both forecasts, 

we found a ~ 1-2 m s-1 southerly environmental wind bias over Joaquin’s optimal steering 

layer between t = 12-24 h; this “environmental wind error” accounts for roughly half (most) 

of the t = 12-24 h motion error in the 29 Sep (30 Sep) initialized GFS forecast. Comparison 

of the 1200 UTC 30 Sep cycle GFS forecast wind and temperature fields against the NCEP 

FNL shows that the GFS southerly wind bias is consistent with the model generating 

inadequately strong mid-to-upper level ridging west of Joaquin. The other significant 

contributor to the 1200 UTC 29 Sep cycle GFS t = 12-24 h track forecast error is a 

northerly-directed “vortex depth error” that results from the GFS-predicted Joaquin vortex 

being too shallow to interact strongly with northeasterly mid-to-upper level environmental 

winds. 

 Using the WRF model, we have further explored the sensitivity of Joaquin’s 

southwestward motion to variations in the initial conditions. We generated a baseline CTL 

analysis for 0600 UTC 29 Sep using a 30-h hybrid data assimilation cycle described in 

chapter 3; a variety of observations are assimilated, including conventional radiosondes, 

high-resolution AMVs, AMSU-A radiances, and bogus moisture soundings. A 1-km 

resolution 114-h WRF forecast from the CTL analysis reproduced Joaquin’s intensity and 

structural changes quite well. However, we found that Joaquin’s southwest motion (and 

eventual hairpin loop) can only be well captured if winds and temperature in the WRF outer 
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three domains (27, 9, and 3-km resolution) are continuously forced toward the NCEP 1˚-

FNL using analysis nudging, which suggests that either (i) large-scale flows in the CTL 

analysis are biased from the true state or (ii) model physics errors in the outer three domains 

are degrading the large-scale flow representation. We confirmed (i) by finding lower CTL-

analyzed geopotential heights, compared to the NCEP 1˚-FNL, over a region extending 

west and northwest from Joaquin into the eastern continental U. S. and over the full depth 

of the troposphere. We then evaluated the sensitivity of Joaquin’s early southwestward 

motion to the initial atmospheric state by perturbing specific features in the CTL analysis 

via assimilation of synthetic observations, and then by running WRF simulations from 

these analyses with nudging turned off. These tests showed that two features critical to 

steering Joaquin southwestward are (i) a sufficiently strong subtropical mid-to-upper level 

ridge northwest of the storm and (ii) a sufficiently deep TC vortex that can interact with 

the geostrophic flows on the east side of the subtropical ridge. 

  How do the above findings contribute to our scientific understanding of unusual 

TC motion? On one hand, they suggest that model misrepresentation of vortex depth may 

be an important track error source for some TCs, especially for weaker, developing storms 

that are embedded in vertically sheared environmental flows. Using their track error 

diagnostic equation applied to WRF forecast output, Galarneau and Davis (2013) showed 

similar motion sensitivity to vortex depth for Hurricane Earl (2010) during its early 

development. For these cases, additional inner-core sampling by means of cloudy radiances 

and aircraft reconnaissance missions may improve track forecasts by improving the model 

estimate of vortex depth in the initial conditions. Vortex depth is generally correlated with 

intensity; therefore, improvements in track forecasting may be partly contingent on more 
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accurate intensity forecasts for these cases. Improvements in TC track and intensity 

forecasting have traditionally been viewed as independent problems. Additionally, we use 

the high-resolution CTL simulation to show how reduction of the northwest-to-southeast 

vortex tilt accounts for a significant portion of Joaquin’s early southwest motion. TC 

motion sensitivity to internal vortex reorganization processes is a topic that has received 

relatively little attention in the literature – and another example of how model prediction 

of TC motion may depend upon model resolution of the vortex structure. Finally, Joaquin’s 

high WRF forecast track sensitivity to relatively small initialized geopotential height 

perturbations in the nearby mid-to-upper level ridge suggests that climatologically unusual 

TC motion may be inherently less predictable than typical TC motion.  

 In chapter 4 we introduced a new algorithm for computing backward trajectories 

from WRF output winds. Trajectory computations for mesoscale flows typically require a 

small (~10 s) computational timestep to minimize the rapid accumulation of numerical 

truncation errors. Disk storage constraints often limit the finest possible model output 

temporal resolution to ~ 5 min, requiring trajectory models to temporally interpolate 

gridded forecast model output to their computational timestep; this has been traditionally 

accomplished using LI. Our major motivation for developing this new trajectory model has 

been to reduce time interpolation errors by implementing an experimental AC algorithm 

that interpolates WRF-output variables from a reference frame moving with the advective 

flow velocity, rather than from a fixed frame as in traditional LI. First, we tested our 

trajectory model on an analytical flow field to verify that the basic code elements are 

functioning properly. Then we showed how AC improves mean position accuracy over LI 

for a sample of 10,201 backward trajectories run from the CTL 5-min output, using 
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reference LI trajectories computed from CTL 1-min output. Finally, we ran backward 

trajectories through a CB updraft core in WRF-simulated Hurricane Wilma (2005) to show 

how AC eliminates spurious LI-trajectory w and 𝜃" oscillations that result from the CB 

moving significant distances between model output times, relative to its horizontal scale. 

  We used our trajectory model to address an open question in the TC research 

community: how do CB updrafts become thermodynamically distinct from the weaker 

background eyewall ascent, given the rapidly rotating flows? CBs have been shown to 

precede and/or accompany RI in TCs, and several hypotheses have been put forward 

regarding their role in facilitating RI (see section 1.1.2). Therefore, it was important for us 

to better understand the inner-core processes favoring their development in TCs. Previous 

studies have mostly examined CB structure and thermodynamics in terms of vertical and 

horizontal cross-sections through model output or from gridded composites derived from 

Doppler radar. The work presented in chapter 5 (and currently under review as Miller and 

Zhang 2019c) is, to the best of our knowledge, the first Lagrangian TC study focusing on 

CB characteristics. Here, we run a large sample of backward trajectories from the WRF-

simulated Hurricane Wilma (2005)’s outflow layer. This analysis combines a detailed 

structural and thermodynamic comparison between a CB parcel and representative 

background ascent trajectory with a statistical comparison of thermodynamic, 

microphysical, and vertical acceleration profiles among different trajectory subsamples 

binned by wMAX.  

One of our significant findings has been that CB updrafts tend to originate from 

portions of the boundary layer where 𝜃" and ocean surface heat/moisture fluxes are locally 

larger than those of nearby areas. In the 1980s the highly influential WISHE hypothesis 
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(Emanuel 1986; Rotunno and Emanuel 1987) re-focused attention on the fact that TC 

intensification is fundamentally driven by heat fluxes from the ocean rather than from pre-

existing conditional instability in the boundary layer (consistent with the fact that TCs 

typically weaken over land). Because surface heat fluxes are proportional to surface wind 

speed, the proposed WISHE mechanism is a type of ocean-atmosphere instability. One of 

WISHE’s central assumptions is that TC intensification occurs in the absence of any 

eyewall conditional instability, with eyewall ascent instead being forced by vortex-scale 

LHR. Here, we show that Wilma’s CB parcels are in fact distinguished from the 

background ascent by their significant thermal buoyancy, in agreement with other recent 

studies that have found discrete buoyant updraft elements in TC eyewalls (Braun 2002; 

Eastin et al. 2005a,b). Our results therefore suggest another mechanism through which 

wind-induced ocean surface heat exchange drives TC intensification – namely, by 

facilitating development of inner-core CBs, which may in turn hasten eye warming (and 

associated surface pressure falls) through their compensating subsidence.  

Our trajectory analysis also identified two midlevel processes that may act to 

further differentiate CB updrafts from the background ascent: environmental air 

entrainment and hydrometeor loading. Although TCs eyewall updraft cores are generally 

close to saturation, modeling studies of mature TCs, including Wilma, have shown a 

midtropospheric 𝜃" minimum in and around the eyewall (Liu et al. 1999; Braun 2002; 

Miller and Zhang 2019c), perhaps due to mixing with lower-𝜃" air from outer regions 

(Cram et al. 2007). We have found that less parcel 𝜃" reduction during ascent from the 

boundary layer to the midtroposphere is another distinguishing CB characteristic, 

consistent with Wilma’s CB updraft cores on average being (i) wider and more resistant to 
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entrainment and (ii) located in regions of local radial outflow where environmental 𝜃" is 

locally higher. We have also found that CB parcels are, on average, characterized by less 

hydrometeor loading in the low-to-middle troposphere relative to other eyewall updrafts. 

In other words, they tend to ascend away from “swaths” of higher rainwater mixing ratios 

being advected cyclonically downstream of existing updrafts. Both low-𝜃" air entrainment 

and hydrometeor loading reduce parcel buoyancy. These findings are consistent with 

Wilma’s CB parcels having stronger midlevel updrafts compared to the background ascent, 

which enables them to loft larger quantities of supercooled water above the melting level 

and ultimately acquire their highest thermal buoyancy (and w) in the upper troposphere due 

to fusion latent heat release. 

 

6.2 Future work 

 In studying CBs and their relationship to RI, this dissertation has focused on 

Hurricane Wilma (2005), a TC rapidly intensifying under near-ideal environmental 

conditions. When environmental VWS27 becomes more significant (i.e., > 5 m s-1), TC 

vortices tend to tilt downshear and become more asymmetric. VWS has traditionally been 

understood to inhibit TC intensification because it increases inner core ventilation by 

lower-𝜃" surrounding air, thereby disrupting development of the warm core and the 

conversion of eyewall latent heating to the swirling winds’ kinetic energy. Although 

observations and numerical simulations have shown that these inhibiting effects generally 

																																																								
27	TC forecasters and researchers typically define environmental VWS as the vector 
difference between the mean environmental wind at 200 hPa and 850 hPa, where the 
mean environmental wind is defined over a disk extending several hundred km outward 
from the storm center after removal of the TC vortex.  
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increase with VWS magnitude (Frank and Ritchie 2001), observations have also shown 

that some TCs can intensify (and even undergo RI) in the presence of so-called “moderate” 

VWS of ~ 5-10 m s-1. Forecasting TC intensity in moderate-VWS environments can be 

particularly difficult, especially if environmental conditions are otherwise favorable and 

there is disagreement in NWP model guidance. It is still an open research question as to 

why some developing TCs are more “resistant” to environmental VWS.     

Although our Hurricane Joaquin (2015) analysis herein has focused on its unusual 

motion, this storm is also an example of a TC undergoing RI despite moderate 

environmental VWS. We showed in section 2.5.3 how Joaquin’s vortex becomes vertically 

aligned over the first 18 CTL forecast hours, as a low-level center develops beneath the 

upper-level center. Previous studies have shown how vertical tilt reduction is a process 

common to TCs intensifying under moderate VWS (Molinari et al. 2006; Nguyen and 

Molinari 2015; Rogers et al. 2015; Rios-Berrios et al. 2016; Fischer et al. 2018; Rios-

Berrios et al. 2018), but the role of inner-core deep convection in this process is still not 

well understood. It may be worthwhile to investigate, in a future study, how Joaquin’s 

eyewall deep convection (simulated in CTL but not shown here) may have facilitated the 

vortex vertical alignment. Few prior studies have tackled the “RI under moderate VWS” 

problem from a Lagrangian perspective, and the trajectory model developed for this 

dissertation could serve as a useful tool toward that end. Vorticity budgets along 

trajectories could shed some light on the role of deep convection in spinning up the swirling 

winds by stretching and aggregating low-level cyclonic vorticity (Montgomery and Smith 

2014; Nguyen and Molinari 2015). This proposed work would also expand upon the results 
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presented in chapter 5 by exploring how environmental VWS impacts CB structure and 

thermodynamics.  

Further work is also needed toward developing a more general theory of TC 

intensification. Our section 1.1.2 discussion of the relationship between CBs and RI 

focused on how CB compensating subsidence facilitates eye warming and hydrostatically-

induced surface pressure falls, as shown in Chen and Zhang (2013) and Miller et al. (2015). 

Other studies have focused on TC intensification from a purely dynamical perspective – in 

terms of the swirling winds’ spinup. Qin et al. (2018b), for example, investigated how 

RMW contraction and AAM flux convergence governed the RI of Hurricane Wilma 

(2005). TC pressure and wind fields are often, to a first order, assumed to be in gradient 

wind balance above the MBL; this implies a lowering of vortex central pressure in response 

to a VT increase at the RMW, and vice versa. Moreover, a synergy likely exists between a 

TC’s warm core development and its swirling wind intensification. For example, the 

efficiency of eyewall latent heat conversion to adiabatic subsidence warming in the eye 

increases with higher VT and cyclonic vorticity (i.e., increased inertial stability: Hack and 

Schubert 1986; Vigh and Schubert 2009), consistent with Chen and Zhang (2013) finding 

that Wilma’s upper-level warm core development was contingent on the spinup of 

sufficiently robust upper-level VT. A more difficult question worth addressing comes in the 

spirit of the proverbial conundrum “which came first – the chicken or the egg?”: is TC 

intensification ultimately driven by eye warming or by dynamical processes that spin up 

VT? Establishment of dynamical relationships between PMIN and VMAX changes is further 

complicated by the fact that gradient wind balance is not satisfied in the MBL, where 

frictional effects become important (Montgomery and Smith 2014). Further trajectory 
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analysis of the Chen et al. (2011) Hurricane Wilma (2005) WRF simulation could be useful 

in better understanding (i) the upper-level warm core formation, (ii) CB contribution to the 

VT spinup, and (iii) any interdependencies between (i) and (ii). 

 Observations and high-resolution modeling studies over the past two decades have 

revealed that TC eyewalls have complex three-dimensional structures, even for mature, 

relatively axisymmetric cases. Flow disturbances embedded in the swirling winds include 

CBs and eyewall mesovortices (Braun et al. 2006). Future work is needed toward better 

understanding how these asymmetric structures contribute to the spinup of the swirling 

winds. Locally, mesovortex circulations (CBs) modulate VT the through radial eddy flux 

convergence of AAM (cyclonic vorticity stretching and vertical advection). Older models 

of TC intensification in VT assume axisymmetry and balanced dynamics (i.e. thermal and 

gradient wind balance being maintained) above the MBL (Charney and Eliassen 1964; 

Ooyama 1982; Shapiro and Willoughby 1982; Rotunno and Emanuel 1987). Therefore, we 

must ask: do our existing theoretical TC intensification models need to be modified to 

account for asymmetric VT spinup mechanisms? Or are the asymmetric processes, when 

considered in their azimuthal averages, implicitly included in the axisymmetric theories?  

 In addressing the theoretical questions posed above, future research could benefit 

from high-resolution satellite and in-situ observations of TC inner core regions, as well as 

from numerical model output. Observational and numerical modeling approaches are 

complementary. Observations serve as our best approximation to the “true” atmosphere 

while numerical model output, provided it is thoroughly validated against observations, 

provides us with reasonably accurate  spatially and temporally continuous data. In recent 

years, computational power has increased to the point that convection-resolving cycled 
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ensemble forecast systems, such as the PSU WRF-EnKF, can be developed and used for 

research purposes (Nystrom et al. 2018). We have saved analyses from the 9-km resolution, 

80-member WRF-DART system developed for the CTL vortex spinup as described in 

chapter 3. A future study could run convection-allowing forecasts from the 0600 UTC 29 

Sep ensemble analyses. Assuming that the forecast spread is reasonably representative of 

the meteorological “errors of the day”, environmental and inner-core structural differences 

between intensifying and non-intensifying members could shed some light on how TCs 

intensify in moderate VWS. Lagrangian processes could be investigated in selected 

ensemble forecasts using the trajectory model developed for this dissertation. The 

ensemble sensitivity approach could also be applied to the re-intensification of Hurricane 

Joaquin (2015) – a process that was not well captured by CTL and the operational NWP 

guidance. This proposed project could employ a newly developed SST parameterization 

scheme for WRF (Liu et al. 2019) to test the sensitivity of Joaquin’s re-intensification to 

the storm’s movement away from its self-generated SST cold pool.  
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Appendix A: Trajectory Model Algorithm for Finding Storm Center 
 

 
 

 Planar views of the simulated Joaquin (2015) horizontal wind and relative vorticity 

fields reveal a center that tilts ~25 km southward between the z = 3 km and z = 8 km levels 

over the trajectory computation period (not shown). The technique described below 

determines the storm center at every height over a user-selected layer for all model output 

times. The layer bottom (top) center coordinates are assigned to all heights below (above) 

the layer on the computational grid; subsequently, model-output winds are interpolated to 

cylindrical coordinates. 

A first-guess storm center location for the lowest height is set to the centroid of the 

region where the sea-level pressure is within 10 hPa (5 hPa) of PMIN when the latter is less 

than (greater than) 990 hPa. Following Cavallo et al. (2013), the vortex center is defined 

as the grid point within a specified search box surrounding the first guess with maximum 

circulation (or equivalently, area-averaged z-component of relative vorticity) within a user-

defined circulation radius. Inner-core vorticity patterns for TCs resolved at high resolution 

can be quite noisy due to small-scale variability in the tangential winds. To generate a 

horizontally smooth vorticity field representative of the vortex-scale circulation, our 

algorithm computes horizontal wind gradients as centered differences across 20-km 

distances and applies five cycles of a nine-point local smoother to the input storm-relative 

u and v winds and the output vorticity. Center coordinates for each height become the first-

guesses for computing the center position of the level above. Alternatively, the sea-level 
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pressure centroid can be used for all heights; this was done when computing trajectories 

from the more axisymmetric and upright Wilma (2005) simulated vortex.  

The Joaquin (2015) experiments described in Section 4.4.1 use the circulation-based 

center determining algorithm with a 50 km-wide center search box and a circulation radius 

that expands linearly with height from 40 km at z = 3 km to 70 km at z = 8 km to account 

for vortex broadening. Users may optionally have the program output the automatically-

determined vortex center coordinates. If the center cannot be reliably determined by either 

method, they may supply the program with an auxiliary input file containing the center 

coordinates obtained by visual inspection.   
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Appendix B: Trajectory Model Computational Considerations 

 

The trajectory computation software developed for this study is written with 

OpenMP directives and designed to be run on a high-performance computing cluster using 

shared memory parallelism across multiple processors on a single node. Although the code 

can be compiled and run as a serial program, parallel processing yields a significant 

speedup, especially when implementing AC (Table B1). For experiments that use very high 

temporal resolution (i.e., 1-min) input data and/or interpolate many non-kinematic 

variables along trajectories, storing the four-dimensional model data arrays during program 

execution may necessitate using large amounts of processor memory (RAM), depending 

on the model domain size (Table B1). Should machine RAM capacity become a limiting 

constraint, program memory usage could be reduced by running a batch of trajectories as 

a series of sequential jobs over shorter integration periods, using end points as the seed 

points for the next integration. 
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Table B1 Wall-clock time and maximum combined processor memory usage for several 
configurations of an experiment running 10,201 4-h backward trajectories on a 20-
processor compute node. Input data is taken from the Hurricane Joaquin (2015) simulation 
and the ACUVW experiments apply advection correction below z = 16 km to the subdomain 
configuration described in section 4.2.3. 
 

Time Interpolation            Input Data       Variables Interpolated          Shared Memory         Wall-clock Time      Maximum RSS28 
        Scheme                     Resolution           Along Trajectories          Parallel Processing           (hh:mm)          Memory Usage (GB) 

           LI                        5-min                    x,y,z                             yes                       00:25                        21  
           ACUVW                5-min                    x,y,z                             yes                       02:27                        35         
           ACUVW                        1-min                    x,y,z                             yes                       05:28                      188              
           ACUVW                        1-min     x,y,z,p,T,AAM,𝜃",qv,qfrz,qliq

29     yes                       06:45                       459 
           LI                        5-min                    x,y,z                             no                        01:55                        21                                                 
           ACUVW                        5-min                    x,y,z                             no                        31:27                 37  

 

 

 

 

 

 

 

 

 

 

 

 

																																																								
28	Resident Set Size (RSS) memory is the portion of the main memory (RAM) on the 
compute node used by the executable. 
29	qv, qfrz, and qliq refer to the mixing ratios of water vapor, frozen hydrometeors, and 
liquid hydrometeors, respectively.  
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